Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Matematika.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.12 Mб
Скачать
  1. Понятие множества. Операции над множествами.

Мно́жество — одно из ключевых понятий математики, в частности, теории множеств и логики. Понятие множества обычно принимается за одно из исходных (аксиоматических) понятий, то есть не сводимое к другим понятиям, а значит, и не имеющее определения. Однако, можно дать описание множества, например, в формулировке Георга Кантора: Под «множеством» мы понимаем соединение в некое целое M определённых хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться «элементами» множества M). Другая формулировка принадлежит Бертрану Расселлу: «Множество есть совокупность различных элементов, мыслимая как единое целое». Также возможно косвенное определение через аксиомы теории множеств. В математической логике и дискретной математике часто употребляемый синоним множества — алфавит. Множество может быть замкнутым и незамкнутым, полным и пустым, упорядоченным и неупорядоченным, счётным и несчётным, конечным и бесконечным. Более того, как в наивной, так и в формальной теориях множеств любой объект обычно считается множеством.

Операции над множествами.Над множествами, как и над многими другими математическими объектами, можно совершать различные операции, которые иногда называют теоретико-множественными операциями или сет-операциями. В результате операций из исходных множеств получаются новые.

Бинарные операции

Ниже перечислены основные операции над множествами:

пересечение:

объединение:

Если множества A и B не пересекаются: , то их объединение обозначают также:

разность (дополнение):

симметрическая разность:

Декартово или прямое произведение:

Для лучшего понимания смысла этих операций используются диаграммы Эйлера — Венна, на которых представлены результаты операций над геометрическими фигурами как множествами точек.

Унарные операции

Абсолютное дополнение:

Операция дополнения подразумевает некоторый универсум (универсальное множество U которое содержит A)

Относительным же дополнением называется А\В

Мощность множества:

Результатом является кардинальное число (для конечных множеств — натуральное).

Множество всех подмножеств (булеан):

Обозначение происходит из того, что в случае конечных множеств

Приоритет выполнения операций

Сначала выполняются операции абсолютного дополнения, затем пересечения, затем объединения и разности, которые имеют одинаковый приоритет. Последовательность выполнения операций может быть изменена скобками.

  1. Абсолютная величина. Понятие окрестности точки.

Абсолю́тная величина́ или мо́дуль числа Х — неотрицательное число, определение которого зависит от типа числа Х. Обозначается: В случае вещественного Х абсолютная величина есть непрерывная кусочно-линейная функция, определённая следующим образом:

Обобщением этого понятия является модуль комплексного числа также иногда называемый абсолютной величиной[1]. Он определяется по формуле:

С геометрической точки зрения, модуль вещественного или комплексного числа есть расстояние между числом и началом координат. В математике широко используется тот факт, что геометрически величина означает расстояние между точками и и, таким образом, может быть использована как мера близости одной (вещественной или комплексной) величины к другой.

Окре́стность точки — множество, содержащее данную точку, и близкие (в каком-либо смысле) к ней. В разных разделах математики это понятие определяется по-разному.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]