
- •Описание технологий Технология Fast Ethernet
- •Технология vdsl
- •Описание используемого сетевого оборудования gs1100-16 – 6 -портовый коммутатор Gigabit Ethernet
- •Fn312 pci-адаптер Fast Ethernet
- •Коннектор rj45 для проволочного кабеля utp.
- •Описание локальной сети
- •Топология
- •Монтажные работы
- •П ланировка
- •Перечень местонахождения компьютеров и коммутаторов
- •Схемы этажей
- •Подсчет расходов
- •Выводы:
Национальный авиационный университет
Институт Компьютерных и Информационных Технологий
Курсовая работа
с дисциплины «Информационно-коммуникационные системы и сети»
Вариант 20
Выполнил:
Студент БИ-241 группы
Пачковський В.О.
Проверила:
Высоцкая Е.О.
Киев 2013
Задание на курсовую работу по дисциплине «Компьютерные сети».
Необходимо объединить в локальную сеть по технологии FastEthernet компьютеры, которые находятся в квартирах трех домов. И осуществить соединение полученной локальной сети с Internet по оговоренной в задании WAN-технологии. Номера домов и квартир, количество компьютеров в квартире и WAN-технология зависят от варианта задания; расстояние между домами и габариты квартир – выбрать самостоятельно; расположение домов и их параметры представлены на рис. 1 и в табл. 1.
В работе должно быть:
План домов (вид сверху и в разрезе) с подробным планом квартир (с размерами помещений), в котором указано размещение компьютеров и всего, необходимого для работы сети, оборудования. В плане должно быть показано, как соединяются компьютеры и внутри домов и между домами.
Описание выбранной топологии созданной сети с учетом компьютеров, сетевого оборудования, каналов передачи данных. Обоснование сделанного выбора.
Выбор необходимого сетевого оборудования (компьютеры (основные параметры), с указанием минимально допустимой конфигурации; сетевые карты; коммутационное оборудование; разъемы; кабель и т.д.), обоснование сделанного выбора, подсчет стоимости выбранного оборудования без учета монтажных работ.
Описания всех использованных стандартов и сетевых технологий (локальных и глобальных).
Все правила, формулы, критерии, ограничения, требования, которыми руководствовались при построении сети (например, минимально допустимое расстояние между компьютерами - …).
Описание и внешний вид использованного при построении сети сетевого оборудования, а также схемы основного сетевого оборудования.
Описание монтажных работ.
Сводная таблица, в которой приведена цена использованного оборудования.
Курсовая работа должна быть представлена в распечатанном виде (на листах формата А4) и в электронном виде (имя файла – Familiya_№варианта, например Ivanov_5).
Вариант №20
№ Дома |
Квартиры |
2 |
17,25,66,225(2 компьютера),227, 305 |
3 |
15,22,25,117(2 компьютера),125 ,133 |
8 |
8, 117(2 компьютера),177(3 компьютера) |
WAN-технология: VDSL
Таблица 1.
№ Дома |
Количество подъездов |
Количество этажей |
Количество квартир на этаже (в скобках указано кол-во комнат в квартирах) |
2 |
4 |
14 |
7 (3+2+2+4+3+4+3) |
3 |
3 |
9 |
5 (3+2+4+3+2) |
8 |
5 |
12 |
5 (3+2+4+2+4) |
План работы
Технология Fast Ethernet 5
Технология VDSL 14
ОПИСАНИЕ ИСПОЛЬЗУЕМОГО СЕТЕВОГО ОБОРУДОВАНИЯ 16
GS1100-16 – 6 -портовый коммутатор Gigabit Ethernet 16
ES-124P 24-портовый коммутатор Fast Ethernet в компактном корпусе 17
P-870H-51A V2 Интернет-центр для подключения по VDSL2 c Ethernet-коммутатором 18
FN312 PCI-адаптер Fast Ethernet 19
UTP CCA Cat5E 24AWG x 4P Solid 0.51 19
Коннектор RJ45 для проволочного кабеля UTP. 19
Описание локальной сети 20
Топология 20
Монтажные работы 21
Планировка 21
Перечень местонахождения компьютеров и коммутаторов 25
Схемы этажей 26
Дом №2 26
Дом №3 27
Подсчет расходов 31
Выводы: 32
Описание технологий Технология Fast Ethernet
Отметим главные особенности эволюционного развития от сетей Ethernet к сетям Fast Ethernet, от стандарта IEEE 802.3 к стандарту IEEE 802.3u:
десятикратное увеличение пропускной способности сегментов сети;
сохранение метода случайного доступа CSMA/CD, принятого в Ethernet;
сохранение формата кадра, принятого в стандарте IEEE 802.3;
поддержка традиционных сред передачи данных - витой пары и волоконно-оптического кабеля.
Указанные свойства, а также, являющаяся следствием, не менее важная функция поддержки двух скоростей и автоопределения 10/100 Мбит/с, встраиваемая в сетевые карты и коммутаторы Fast Ethernet, позволяют осуществлять плавный переход от сетей Ethernet к более скоростным сетям Fast Ethernet, обеспечивая выгодную преемственность по сравнению с другими технологиями. Еще один дополнительный фактор успешного завоевания рынка - низкая стоимость оборудования Fast Ethernet.
Архитектура стандарта Fast Ethernet
На рис.1 показана структура уровней Fast Ethernet. Еще на стадии разработки стандарта 100Base-T комитет IEEE 802.3u определил, что не существует универсальной схемы кодирования сигнала, которая была бы идеальной для всех трех физических интерфейсов (TX, FX, T4). Если сравнивать со стандартом IEEE 802.3, то там функцию кодирования (манчестерский код) выполняет уровень физической сигнализации PLS (рис.1), который находится выше среда независимого интерфейса AUI. В стандарт Fast Ethernet функции кодирования выполняет подуровень кодирования PCS, размещенный ниже среда независимого интерфейса MII. В результате этого, каждый трансивер должен использовать свой собственный набор схем кодирования, наилучшим образом подходящий для соответствующего физического интерфейса, например набор 4B/5B и NRZI для интерфейса 100Base-FX.
Рис.1. Структура уровней стандарта Fast Ethernet, MII интерфейс и трансивер Fast Ethernet
MII интерфейс и трансиверы Fast Ethernet
Интерфейс MII (medium independent interface) в стандарте Fast Ethernet является аналогом интерфейса AUI в стандарте IEEE 802.3. MII интерфейс обеспечивает связь между подуровнями согласования и физического кодирования. Основное его назначение - упростить использование разных типов среды. MII интерфейс предполагает дальнейшее подключение трансивера Fast Ethernet. Для связи используется 40 контактный разъем. Максимальное расстояние по MII интерфейсному кабелю не должно превышать 0,5 м.
Если устройство имеет стандартные физические интерфейсы (например, RJ-45), то структура подуровней физического уровня может быть скрыта внутри микросхемы с большой интеграцией логики. Кроме того допустимы отклонения в протоколах промежуточных подуровней в едином устройстве, ставящие главной целью рост быстродействия.
Физические интерфейсы Fast Ethernet
Стандартом Fast Ethernet IEEE 802.3u установлены три типа физического интерфейса (рис.2, табл.1): 100Base-FX, 100Base-TX и 100Base-T4.
Рис.2. Физические интерфейсы стандарта Fast Ethernet
100Base-FX
Стандарт этого волоконно-оптического интерфейса полностью идентичен стандарту FDDI PMD, который подробно рассмотрен в главе. Основным оптическим разъемом стандарта 100Base-FX является Duplex SC. Интерфейс допускает дуплексный канал связи.
100Base-TX
Стандарт этого физического интерфейса предполагает использование неэкранированной витой пары категории не ниже 5. Он полностью идентичен стандарту FDDI UTP PMD, который также подробно рассмотрен в главе 6. Физический порт RJ-45 как и в стандарте 10Base-T может быть двух типов: MDI (сетевые карты, рабочие станции) и MDI-X (повторителе Fast Ethernet, коммутаторы). Порт MDI в единичном количестве может иметься на повторителе Fast Ethernet. Для передачи по медному кабелю используются пары 1 и 3. Пары 2 и 4 - свободны. Порт RJ-45 на сетевой карте и на коммутаторе может поддерживать на ряду с режимом 100Base-TX и режим 10Base-T или функцию автоопределения скорости. Большинство современных сетевых карт и коммутаторов поддерживают эту функцию по портам RJ-45 и кроме этого могут работать в дуплексном режиме.
100Base-T4
Этот тип интерфейса позволяет обеспечить полудуплексный канал связи по витой паре UTP Cat.3 и выше. Именно возможность перехода предприятия со стандарта Ethernet на стандарт Fast Ethernet без радикальной замены существующей кабельной системы на основе UTP Cat.3 следует считать главным преимуществом этого стандарта.
В отличи от стандарта 100Base-TX, где для передачи используется только две витых пары кабеля, в стандарте 100Base-T4 используются все четыре пары (рис.3а). Причем при связи рабочей станции и повторителя посредством прямого кабеля, данные от рабочей станции к повторителю идут по витым парам 1, 3 и 4, а в обратном направлении - по парам 2, 3 и 4. Пары 1 и 2 используются для обнаружения коллизий подобно стандарту Ethernet. Другие две пары 3 и 4 попеременно в зависимости от команд могут пропускать сигнал либо в одном, либо в другом направлении. Битовая скорость в расчете на один канал составляет 33,33 Мбит/с.
Символьное кодирование 8B/6T. Если использовалось бы манчестерское кодирование, то битовая скорость в расчете на одну витую пару была бы 33.33 Мбит/с, что превышало установленный предел 30 МГц для таких кабелей. Эффективное уменьшить частоты модуляции достигается, если вместо прямого (2-х уровневого) бинарного кода использовать 3-х уровневый (ternary) код. Этот код известен как 8B6T; это означает, что прежде, чем происходит передача, каждый набор из 8 бинарных битов (символ) сначала преобразуется в соответствии с определенными правилами в 6 тройных (3-х уровневых) символов. На примере, показанном на рис.3б, можно определить скорость 3-х уровневого символьного сигнала:
МГц
значение которой не превышает установленный предел.
Рис.3. |
Физические интерфейсы 100Base-T4: а) Использование витых пар; б) Кодирование 6B/8T |
Интерфейс 100Base-T4 имеет один существенный недостаток - принципиальную невозможность поддержки дуплексного режима передачи. И если при строительстве небольших сетей Fast Ethernet с использованием повторителей, 100Base-TX не имеет преимуществ перед 100Base-T4 (существует коллизионный домен, полоса пропускания которого не больше 100 Мбит/с), то при строительстве сетей с использованием коммутаторов недостаток интерфейса 100Base-T4 становится очевидным и очень серьезным. Поэтому данный интерфейс не получи столь большого распространения, как 100Base-TX и 100Base-FX.
Типы устройств Fast Ethernet
Основные категории устройств, применяемых в Fast Ethernet, такие же как и в Ethernet: трансиверы; конвертеры; сетевые карты (для установки на рабочие станции/файл серверы); повторители; коммутаторы.
Трансивер это (по аналогии с трансивером Ethernet) двухпортовое устройство, охватывающее подуровни PCS, PMA, PMD и AUTONEG, и имеющее с одной стороны MII интерфейс, с другой - один из средазависимых физических интерфейсов (100Base-FX, 100Base-TX или 100Base-T4). Трансиверы используются сравнительно редко, как и редко используются сетевые карты, повторители, коммутаторы с интерфейсом MII.
Сетевая карта. Наиболее широкое распространение получили сегодня получили сетевые карты с интерфейсом 100Base-TX на шину PCI. Необязательными но крайне желательными функциями порта RJ-45 является автоконфигурирования 100/10 Мбит/с, и поддержка дуплексного режима. Большинство современных выпускаемых карт поддерживают эти функции. Выпускаются также сетевые карты с оптическим интерфейсом 100Base-FX (производителя IMC, Adaptec, Transition Networks и др.) - основным стандартным оптическим является разъем SC (допускается ST) на многомодовое волокно.
Конвертер (media converter) - это двухпортовое устройство, оба порта которого представляют средазависимые интерфейсы. Конвертеры в отличии от повторителей могут работать в дуплексном режиме, за исключение случая, когда имеется порт 100Base-T4. Распространены конвертеры 100Base-TX/100Base-FX. В силу общих тенденций роста широкополосных протяженных сетей с использованием одномодовых ВОК, потребление оптических приемо-передатчиков на одномодовое волокно резко возросло в последние один-два года. Конвертерные шасси, объединяющие несколько отдельных модулей 100Base-TX/100Base-FX позволяют подключать множество сходящих в центральном узле волоконно-оптических сегментов к коммутатору оснащенному дуплексными портами RJ-45 (100Base-TX).
Повторитель. По параметру максимальных временных задержек при ретрансляции кадров, повторители Fast Ethernet подразделяются на два класса:
Класс I. Задержка на двойном пробеге RTD не должна превышать 130 BT. В силу менее жестких требований, повторители этого класса могут иметь порты T4 и TX/FX, а также объединяться в стек.
Класс II. К повторителям этого класса предъявляются более жесткие требования по задержке на двойном пробеге: RTD < 92 BT, если порты типа TX/FX; и RTD < 67 BT, если все порты типа T4.(В силу значительных отличий в организации физических уровней, возникает большая задержка кадра при ретрансляции между портами интерфейсов T4 и TX/FX. Поэтому повторители, совмещающие в пределах одного устройства порты T4 с портами TX/FX, отнесены по стандарту к классу I.)
Коммутатор - одно из наиболее важных устройств при построении корпоративных сетей. Большинство современных коммутаторов Fast Ethernet, либо допускают работу в режиме автоопредления 100/10 Мбит/с по портам RJ-45, либо могут работать исключительно в этом режиме (неинтеллектуальные коммутаторы 10/100). Естественно, в таких коммутаторах возможна дуплексная передача (за исключением 100Base-T4). Коммутаторы могут иметь специальные дополнительные слоты для установления uplink-модуля. В качестве интерфейсов у таких модулей могут выступать оптический порты типа Fast Ethernet 100Base-FX, FDDI , ATM (155 Мбит/с), Gigabit Ethernet и др.
Правила построения сегментов Fast Ethernet
Технология Fast Ethernet, как и все некоаксиальные варианты Ethernet'а рассчитана на подключение конечных узлов - компьютеров с соответствующими сетевыми адаптерами - к многопортовым концентраторам-повторителям или коммутаторам.
Правила корректного построения сегментов сетей Fast Ethernet включают:
-ограничения на максимальные длины сегментов, соединяющих DTE c DTE;
-ограничения на максимальные длины сегментов, соединяющих DTE с портом повторителя;
-ограничения на максимальный диаметр сети;
-ограничения на максимальное число повторителей и максимальную длину сегмента, соединяющего повторители.
Ограничения длин сегментов DTE-DTE
В качествеDTE (Data Terminal Equipment)может выступать любой источник кадров данных для сети: сетевой адаптер, порт моста, порт маршрутизатора, модуль управления сетью и другие подобные устройства. Порт повторителя не является DTE. В типичной конфигурации сети Fast Ethernet несколько DTE подключается к портам повторителя, образуя сеть звездообразной топологии.
Спецификация IEEE 802.3u определяет следующие максимальные значения сегментов DTE-DTE:
Стандарт |
Тип кабеля |
Максимальная длина сегмента |
100Base-TX |
Category 5 UTP |
100 метров |
100Base-FX |
многомодовое оптоволокно 62.5/125 мкм |
412 метров (полудуплекс) 2 км (полный дуплекс) |
100Base-T4 |
Category 3,4 или 5 UTP |
100 метров |
Ограничения, связанные с соединениями с повторителями
Повторители Fast Ethernet делятся на два класса. Повторители класса I поддерживают все типы систем кодирования физического уровня: 100Base-TX/FX и 100Base-T4. Повторители класса II поддерживают только один тип системы кодирования физического уровня - 100Base-TX/FX или 100Base-T4.
В одном домене коллизий допускается наличие только одного повторителя класса I. Это связано с тем, что такой повторитель вносит большую задержку при распространении сигналов из-за необходимости трансляции различных систем сигнализации.
Максимальное число повторителей класса II в домене коллизий - 2, причем они должны быть соединены между собой кабелем не длиннее 5 метров.
Небольшое количество повторителей Fast Ethernet не является серьезным препятствием при построении сетей. Во-первых, наличие стековых повторителей снимает проблемы ограниченного числа портов - все каскадируемые повторители представляют собой один повторитель с достаточным числом портов - до нескольких сотен. Во-вторых, применение коммутаторов и маршрутизаторов делит сеть на несколько доменов коллизий, в каждом из которых обычно имеется не очень большое число станций.Общая длинна сети не будет иметь в этом случае ограничений.
При прокладке сетевого кабеля мы руководствовались такими правилами:
- Минимальный радиус изгиба для кабеля - четыре диаметра кабеля (или 1 дюйм=2,5 см), но существуют рекомендации размещать кабель таким образом, чтобы обеспечивать изгиб радиусом 2 дюйма (5 см.).
- Минимальное расстояние между сетевым кабелем и параллельно ему проложенным силовым кабелем напряжением менее 2 КВольт - 12,5 сантиметров (5 дюймов).
DSL.Что такое DSL? DSL - Digital Subscriber Line - в русском переводе соответствует уже устоявшемуся термину "цифровая абонентская линия". Мало кто знает, что первоначально эти три слова употреблялись для обозначения ISDN-BA. Вот как определяли термин DSL в Bellcore - научно-исследовательском центре компании AT&T, занимавшемся в 80-е годы разработками и стандартизацией в области ISDN: "DSL - это трехканальная линия, соединяющая ISDN-терминал пользователя с коммутационной системой телефонной компании по четырем обычным телефонным проводам. Используя Basic Rate Interface (два коммутируемых канала по 64 Кбит/с и один 16 Кбит/с канал передачи данных, основанный на технологии коммутации пакетов), DSL обеспечивает одновременную дуплексную транспортировку речи и данных, а также сигнальной и другой служебной информации". В конце 80-х годов в Bellcore на базе технологии DSL был разработан новый метод высокоскоростной (в то время - до 1,5 Мбит/с) передачи данных по медным проводам, который, по аналогии со своим предшественником, получил наименование "высокоскоростная цифровая абонентская линия" (High bit rate Digital Subscriber Line, HDSL). Тогда и возникла путаница с употреблением аббревиатуры DSL по отношению к линии, оборудованию и технологии. В настоящее время термин DSL полностью потерял былую связь с линией ISDN BRI и означает технологию высокоскоростной передачи дискретных сигналов по физической линии (медным проводам). Более того, под DSL-линией подразумевается не просто "цифровая абонентская линия", которая организовывается на любом оборудовании (ISDN, модемах для физических линий, адаптерах цифровых линий CSU/DSU и т. п.). DSL - цифровая линия связи (причем не обязательно абонентская, но и соединительная или магистральная в кампусной сети), которая строится только на xDSL-устройствах, т. е. на оборудовании, основывающемся на различных видах DSL-технологии: высокоскоростной (HDSL), асимметричной (ADSL), с подстройкой скорости (RADSL) и т. д.
Так что же такое технология DSL? DSL является достаточно новой технологией, позволяющей значительно расширить полосу пропускания старых медных телефонных линий, соединяющих телефонные станции с индивидуальными абонентами. По сравнению со своими предшественниками (телефонными модемами, ИКМ - и ISDN-оборудованием, модемами для физических линий и т. п.), xDSL-техника более эффективно использует возможности медной транспортной среды. Любой абонент, пользующийся в настоящий момент обычной телефонной связью, имеет возможность с помощью технологии DSL значительно увеличить скорость своего соединения, например с сетью Интернет. Следует помнить, что для организации линии DSL используются именно существующие телефонные линии; данная технология тем и хороша, что не требует прокладывания дополнительных телефонных кабелей. В результате вы получаете круглосуточный доступ в сеть Интернет с сохранением нормальной работы обычной телефонной связи. Никто из ваших друзей больше не пожалуется, что часами не может к вам прозвониться. Благодаря многообразию технологий DSL пользователь может выбрать подходящую именно ему скорость передачи данных - от 32 Кбит/с до более чем 50 Мбит/с. Данные технологии позволяют также использовать обычную телефонную линию для таких широкополосных систем, как видео по запросу или дистанционное обучение. Современные технологии DSL дают возможность организовать высокоскоростной доступ в Интернет из каждого дома или на каждом предприятии среднего и малого бизнеса, превращая обычные телефонные кабели в высокоскоростные цифровые каналы. Причем скорость передачи данных зависит только от качества и протяженности линий, соединяющих пользователя и провайдера. При этом провайдеры обычно дают возможность пользователю самому выбрать скорость передачи, наиболее соответствующую его индивидуальным потребностям.
Как работает DSL? Телефонный аппарат, установленный у вас дома или в офисе, соединяется с оборудованием телефонной станции с помощью витой пары медных проводов. Традиционная телефонная связь предназначена для обычных телефонных разговоров с другими абонентами телефонной сети. При этом по сети передаются аналоговые сигналы. Телефонный аппарат воспринимает акустические колебания (являющиеся естественным аналоговым сигналом) и преобразует их в электрический сигнал, амплитуда и частота которого постоянно изменяется. Так как вся работа телефонной сети построена на передаче аналоговых сигналов, проще всего, конечно же, использовать для передачи информации между абонентами или абонентом и провайдером именно такой метод. Именно поэтому вам пришлось прикупить в дополнение к вашему компьютеру еще и модем, который позволяет демодулировать аналоговый сигнал и превратить его в последовательность нулей и единиц цифровой информации, воспринимаемой компьютером. При передаче аналоговых сигналов используется только небольшая часть полосы пропускания витой пары медных телефонных проводов; при этом максимальная скорость передачи, которая может быть достигнута с помощью обычного модема, составляет около 56 Кбит/с. DSL представляет собой технологию, которая исключает необходимость преобразования сигнала из аналоговой формы в цифровую форму и наоборот. Цифровые данные передаются на ваш компьютер именно как цифровые данные, что позволяет использовать гораздо более широкую полосу частот телефонной линии. При этом существует возможность одновременно использовать и аналоговую телефонную связь, и цифровую высокоскоростную передачу данных по одной и той же линии, разделяя спектры этих сигналов. Возможность применения обычной пары медных проводов было обусловлено развитием новых методов цифровой обработки сигналов. Модемы создают несколько каналов, используя доступный диапазон частот линии, с помощью частотного мультиплексирования (Frequency Divison Multiplexing, FDM) или эхо-подавителей. FDM разделяет диапазон на два: один - для доставки, а другой - для доступа.
Канал доставки разделяется на несколько низко- и высокоскоростных каналов посредством временного мультиплексирования. Путь доступа мультиплексируется в низкоскоростные каналы, накладываясь на каналы доставки. Локальные эхо-подавители используются для отделения прямого от обратного трафика, во многом аналогично тому, как это делается в случае аналоговых модемов.
Что касается методов модуляции, то в настоящее время наибольшее распространение получила "дискретная многотональная модуляция" (Discrete Multitone, DMT) . Она, кстати, является стандартной для ADSL.
ADSL использует частоты в диапазоне от 0 до 1.1 МГц. Диапазон от 0 до 4 кГц зарезервирован для аналоговых телефонных линий. Если трафик передается только от станции к абоненту, то DMT разделяет диапазон между 26 кГц и 1.1 МГц на 249 каналов по 4 кГц, каждый из которых можно рассматривать, как эквивалент модема. DMT выделяет также 25 дуплексных каналов для трафика в обоих направлениях. Если канал не проходит по помехам, он может исключаться из работы. С увеличением расстояния, помех на линии становится все больше, соответственно скорость передачи данных падает.
Типы технологий xDSL
DSL объединяет под своим крылом сразу несколько технологий цифрового абонентского доступа. Для пользователя важно понять отличие между ними при выборе оборудования. Наибольшее значение имеет отношение расстояния до базовой станции к скорости передачи данных, а так же разница между скоростями "нисходящего" (от сети к пользователю) и "входящего" (от пользователя к сети) потока данных.
Итак, DSL представляет собой набор следующих технологий:
ADSL (Asymmetric Digital Subscriber Line — асимметричная цифровая абонентская линия)
Получила наибольшее распространение благодаря простой инсталляции, возможности одновременной работы телефона и высокоскоростной передачи данных, относительно низкой стоимости подключения. Эта технология идеально подходит для небольших офисов и домашних пользователей так же своей асимметрией. Как всем известно, поток данных к абоненту существенно выше, чем обратный, т.к. в основном информация из сети получается пользователем (сайты, файлы и т.д.). ADSL обеспечивает скорость данных к пользователю в пределах до 8 Мбит/с, и скорость от пользователя до 768 Кбит/с. Причем данная скорость может быть достигнута только на расстоянии до 2 км по проводам диаметром 0.4 мм ( наиболее распространенный в нашей стране). При увеличении расстояния скорость передачи данных уменьшается. Максимальная дальность составляет приблизительно 4.5-5.5 км при диаметре провода 0.4.
Более простой вариант ADSL. Обеспечивает скорость «нисходящего» потока до 1.5 Мбит/с и скорость "восходящего" потока до 512 Кбит/с
IDSL (ISDN Digital Subscriber Line — цифровая абонентская линия IDSN)
Обеспечивает передачу данных на скоростях до 144 Кбит/с в обоих направлениях (дуплекс). Отличие от привычного ISDN состоит в том, что IDSL некоммутируемая технология, то есть пользователю не требуется дозваниваться до провайдера. Собственно, это изюминка всей линейки DSL.
HDSL (High Bit-Rate Digital Subscriber Line — высокоскоростная цифровая абонентская линия)
Технология HDSL предусматривает организацию симметричной линии передачи данных, то есть скорости передачи данных от пользователя в сеть и из сети к пользователю равны. Благодаря скорости передачи (1.544 Мбит/с по двум парам проводов и 2.048 Мбит/с по трем парам проводов) телекоммуникационные компании используют технологию HDSL в качестве альтернативы линиям T1/E1. (Линии Т1 используются в Северной Америке и обеспечивают скорость передачи данных 1.544 Мбит/с, а линии Е1 используются в Европе и обеспечивают скорость передачи данных 2.048 Мбит/с.) Хотя расстояние, на которое система HDSL передает данные (а это порядка 3.5 — 4.5 км), меньше, чем при использовании технологии ADSL, для недорогого, но эффективного, увеличения длины линии HDSL телефонные компании могут установить специальные повторители. Использование для организации линии HDSL двух или трех витых пар телефонных проводов делает эту систему идеальным решением для соединения УАТС, серверов Интернет, локальных сетей и т.п. Технология HDSL2 является логическим результатом развития технологии HDSL. Данная технология обеспечивает характеристики, аналогичные технологии HDSL, но при этом использует только одну пару проводов.
SDSL (Single Line Digital Subscriber Line — однолинейная цифровая абонентская линия)
Также как и технология HDSL, технология SDSL обеспечивает симметричную передачу данных со скоростями, соответствующими скоростям линии Т1/Е1, но при этом технология SDSL имеет два важных отличия. Во-первых, используется только одна витая пара проводов, а во-вторых, максимальное расстояние передачи ограничено 3 км. В пределах этого расстояния технология SDSL обеспечивает, например, работу системы организации видеоконференций, когда требуется поддерживать одинаковые потоки передачи данных в оба направления. В определенном смысле технология SDSL является предшественником технологии HDSL2.