
- •Конспект лекций
- •1. Основные законы аэродинамики
- •1.1. Атмосфера земли. Физические свойства воздуха
- •1.2. Температура воздуха
- •1.3. Абсолютная температура
- •1.4. Давление воздуха
- •1.5. Плотность воздуха
- •1.6. Зависимость плотности воздуха от его температуры и давления
- •1.7. Международная стандартная атмосфера
- •1.8. Физические свойства воздуха
- •1.9. Сжимаемость воздуха и скорость звука
- •1.10. Скачки уплотнения
- •1.11. Основные законы движения воздуха. Основы молекулярно-кинетической теории
- •1.12. Установившийся воздушный поток
- •1.13. Ламинарный и турбулентный воздушный поток
- •1.14. Пограничный слой
- •1.15. Уравнение неразрывности струи воздушного потока
- •1.16. Статическое давление и скоростной напор. Уравнение бернулли
- •1.17. Аэродинамические трубы
- •2. Полная аэродинамическая сила. Центр давления и аэродинамический фокус
- •2.1. Аэродинамические силы. Обтекание тел воздушным потоком
- •2.2. Крыло и его назначение
- •2.3. Геометрические характеристики крыла
- •2.4. Средняя аэродинамическая хорда крыла
- •2.5. Перемещение центра давления крыла и самолета
- •2.6. Фокус профиля крыла
- •3. Поляра и аэродинамическое качество
- •3.1. Поляра самолета
- •3.2. Механизация крыла
- •1. Подъемная сила крыла. Коэффициент подъемной силы крыла. Угол атаки
- •1.1. Влияние на аэродинамическое качество угла атаки
- •2. Сила лобового сопротивления. Коэффициент силы лобового сопротивления
- •2.1. Лобовое сопротивление крыла
- •3. Боковая аэродинамическая сила. Коэффициент боковой аэродинамической силы. Угол скольжения.
- •1. Аэродинамические ла - центрические прямоугольные системы координат
- •2. Схема моментов действующих на летательный аппарат в связанной системе координат.
- •2.1. Моменты, действующие на самолет
- •2.2. Устойчивость и управляемость самолета
- •2.3. Принцип действия рулей
- •2.4. Центр тяжести самолета
- •2.5. Центровка самолета
- •2.6. Предельно передняя и предельно задняя центровки самолета
- •2.7. Фокус крыла самолета
- •3. Система продольных моментов действующих на летательный аппарат в полете.
- •3.1. Продольная балансировка самолета
- •3.2. Аэродинамическая компенсация. Триммер
- •3.3. Влияние момента горизонтального оперения на продольную балансировку
- •3.4. Влияние момента силовой установки на продольную балансировку
- •3.5. Продольная устойчивость самолета
- •3.6. Продольная статическая устойчивость по перегрузке
- •3.7. Продольная устойчивость по скорости
- •4. Система поперечных моментов действующих на летательный аппарат в полете. Поперечная балансировка.
- •4.1. Влияние реакции вращения воздушного винта на поперечную балансировку
- •4.2. Поперечная, путевая и боковая устойчивость самолета
- •4.3. Поперечная устойчивость на больших углах атаки
- •4.4. Поперечная управляемость самолета
- •4.5. Особенности поперечной устойчивости и управляемости на больших скоростях полета
- •5. Система боковых моментов действующих на летательный аппарат в полете.
- •5.1. Путевое равновесие самолета
- •5.2. Путевая устойчивость самолета
- •5.3. Путевая балансировка. Влияние воздушной струи от винта на путевую балансировку
- •5.4. Путевая управляемость самолета
- •5.5. Боковая устойчивость и управляемость самолета
- •Лекция 4. Основы динамики полета самолета
- •1. Установившийся прямолинейный полет самолета. Схема сил и уравнения движения.
- •1.1. Горизонтальный полет самолета
- •1.2. Установившийся горизонтальный полет
- •1.3. Скорость, потребная для горизонтального полета
- •1.4. Тяга и мощность, потребные для горизонтального полета
- •2. Диапазон споростей и высот прямолинейного горизонтального полета.
- •2.1. Зависимость потребной тяги и мощности для горизонтального полета от скорости горизонтального полета. Кривые н. Е. Жуковского
- •2.2. Диапазон скоростей горизонтального полета
- •2.3. Первые и вторые режимы горизонтального полета
- •3. Предельные режимы полета самолета
- •3.1. Эволютивная скорость полета
- •3.2. Влияние высоты на потребные скорости горизонтального полета. График потребных и располагаемых мощностей для различных высот
- •3.3. Влияние массы самолета на потребные скорости
- •Лекция 5. Набор высоты и снижение самолета
- •1. Система сил и уравнения движения самолета в наборе высоты
- •1.1. Схема сил, действующих на самолет на подъеме
- •1.2. Скорость, потребная для подъема
- •1.3. Тяга и мощность, потребные при подъеме
- •1.4. Поляра скоростей подъема самолета. Первые и вторые режимы подъема
- •1.5. Режим наиболее быстрого подъема (набора высоты).
- •1.6. Режим наиболее крутого подъема
- •1.7. Барограмма подъема
- •1.8. Потолок самолета
- •1.9. Влияние ветра на подъем самолета
- •2. Система сил и уравнения движения в процессе снижения самолета. Планирование самолета
- •2.1. Силы, действующие на самолет при планировании
- •2.2. Потребная скорость планирования. Предельная скорость самолета
- •2.3. Угол планирования самолета
- •2.4. Поляра скоростей планирования
- •2.5. Дальность планирования
- •2.6. Влияние ветра на планирование
- •2.7. Вертикальная скорость планирования
- •2.8. Первые и вторые режимы планирования
- •Лекция 6. Взлет и посадка самолета
- •1. Схема сил та рівняння руху літака у процесі зльоту. Злітні характеристики літака.
- •1.1. Профиль и элементы взлета. Разбег самолета
- •1.2. Отрыв самолета
- •1.3. Длина разбега
- •1.4. Выдерживание самолета
- •1.5. Подъем самолета
- •1.6. Взлетная дистанция
- •1.7. Взлет с боковым ветром
- •1.8. Взлет аэропоезда
- •1.9. Скорость отрыва
- •1.10. Влияние ветра на взлет самолета
- •1.11. Взлет самолета Як-52 при боковом ветре
- •1.12. Схема сил и уравнения движения на различных этапах взлета
- •2. Взлетная конфигурация самолета
- •3. Схема сил и уравнения движения самолета в процессе в процессе посадки. Посадочные характеристики самолета
- •3.1. Планирование самолета при посадке
- •3.2. Выравнивание
- •3.3. Выдерживание
- •3.4. Пробег самолета
- •4. Посадочная конфигурация самолета
- •Литература
- •Оглавление
3. Предельные режимы полета самолета
3.1. Эволютивная скорость полета
Эволютивная скорость летательного аппарата - минимальная скорость, на которой самолет имеет возможность выполнять некоторые минимальные эволюции (маневры). Для неманевренных самолетов различают минимальную эволютивную скорость: при разбеге, взлете, посадке и при уходе на второй круг.
3.2. Влияние высоты на потребные скорости горизонтального полета. График потребных и располагаемых мощностей для различных высот
Воспользовавшись формулой (11), найдем зависимость потребной мощности от высоты полета. После преобразований получим
(15)
Где NН - потребная мощность горизонтального полета на заданной высоте Н;
N0-
потребная мощность горизонтального
полета у земли. Из формулы видно, что
при неизменном угле атаки потребная
для горизонтального полета мощность
будет увеличиваться с высотой
пропорционально
Рис. 7. Кривые потребных и располагаемых мощностей для различных высот полета
Рис. 8 Изменение характерных скоростей горизонтального полета с подъемом на высоту самолета с поршневой силовой установкой
Полет на наивыгоднейшем угле атаки и соответствующих ему максимальном качестве kмакс и наивыгоднейшей скорости при увеличении высоты полета потребует увеличения потребной мощности, так как наивыгоднейшая скорость с поднятием на высоту растет пропорционально
Однако
отношение
для всех высот сохранится постоянным,
потому что
(16)
Из этого следует, что кривые для различных высот полета будут иметь общую касательную, проведенную из начала координат (рис. 7). Кривые располагаемых мощностей снимаются с характеристик двигательных установок с учетом КПД воздушного винта.
У самолетов с высотными поршневыми двигателями располагаемая мощность увеличивается до расчетной высоты, вследствие этого увеличивается и максимальная скорость полета. Выше расчетной высоты располагаемая мощность уменьшается, уменьшается и Vмакс (рис. 8). С увеличением высоты полета до расчетной увеличивается и избыток мощности. Дальнейшее увеличение высоты полета сопровождается уменьшением избытка мощности ΔN, который на потолке самолета обращается в нуль.
3.3. Влияние массы самолета на потребные скорости
Удельная нагрузка на крыло в полете меняется в зависимости от количества горючего (его расхода).
Рассмотрим горизонтальный полет самолета Як-52 при изменении нагрузки, но при одинаковом угле атаки и на одной высоте.
Пусть полетный вес уменьшается, но условие горизонтального полета сохраняется (Y=G), поэтому соответственно необходимо уменьшить подъемную силу. Это можно выполнить либо уменьшением угла атаки, либо путем уменьшения скорости до величины V1.
Если известна потребная скорость V при расчетном весе G, то вычислить потребную скорость при новом весе можно по формуле
разделив второе выражение на первое и сократив, получим
(17)
Из формулы видно, что при уменьшении полетного веса потребная скорость уменьшается пропорционально квадратному корню отношения весов (плотность воздуха неизменна). При уменьшении веса на самолетах Як-52 и Як-55 потребная скорость горизонтального полета уменьшается.
Задача. Летчик выполняет перелет на высоте 500 м. Первоначальный полетный вес составлял 1240 кгс Скорость полета V=240 км/ч. К концу перелета израсходовано 80 кгс горючего. Какова величина необходимой скорости горизонтального полета при том же угле атаки и той же высоте полета.
Решение 1. Определим вес самолета без израсходованного горючего. Он составляет 1160 кгс.
2. Определим необходимую скорость для сохранения горизонтального полета по формуле
Потребная скорость для сохранения горизонтального полета при том же угле атаки и при той же высоте полета составляет 225,6 км/ч.
Изменение полетного веса влияет также и на другие летные качества самолета. Рассматривая кривые потребных мощностей для разного веса самолета, можно сделать выводы:
при увеличении веса самолета его минимальная посадочная, экономическая и наивыгоднейшая скорости увеличиваются, максимальная скорость уменьшается по причине увеличения угла атаки, необходимого для поддержания веса самолета в горизонтальном полете;
с увеличением полетного веса диапазон скоростей уменьшается вследствие уменьшения максимальной скорости и увеличения экономической;
с увеличением полетного веса уменьшается потолок самолета вследствие уменьшения избытка мощности.
Анализируя вышесказанное, можно сделать вывод, что с увеличением полетного веса самолета его летные характеристики ухудшаются, а с уменьшением веса самолета - улучшаются.