
- •Конспект лекций
- •1. Основные законы аэродинамики
- •1.1. Атмосфера земли. Физические свойства воздуха
- •1.2. Температура воздуха
- •1.3. Абсолютная температура
- •1.4. Давление воздуха
- •1.5. Плотность воздуха
- •1.6. Зависимость плотности воздуха от его температуры и давления
- •1.7. Международная стандартная атмосфера
- •1.8. Физические свойства воздуха
- •1.9. Сжимаемость воздуха и скорость звука
- •1.10. Скачки уплотнения
- •1.11. Основные законы движения воздуха. Основы молекулярно-кинетической теории
- •1.12. Установившийся воздушный поток
- •1.13. Ламинарный и турбулентный воздушный поток
- •1.14. Пограничный слой
- •1.15. Уравнение неразрывности струи воздушного потока
- •1.16. Статическое давление и скоростной напор. Уравнение бернулли
- •1.17. Аэродинамические трубы
- •2. Полная аэродинамическая сила. Центр давления и аэродинамический фокус
- •2.1. Аэродинамические силы. Обтекание тел воздушным потоком
- •2.2. Крыло и его назначение
- •2.3. Геометрические характеристики крыла
- •2.4. Средняя аэродинамическая хорда крыла
- •2.5. Перемещение центра давления крыла и самолета
- •2.6. Фокус профиля крыла
- •3. Поляра и аэродинамическое качество
- •3.1. Поляра самолета
- •3.2. Механизация крыла
- •1. Подъемная сила крыла. Коэффициент подъемной силы крыла. Угол атаки
- •1.1. Влияние на аэродинамическое качество угла атаки
- •2. Сила лобового сопротивления. Коэффициент силы лобового сопротивления
- •2.1. Лобовое сопротивление крыла
- •3. Боковая аэродинамическая сила. Коэффициент боковой аэродинамической силы. Угол скольжения.
- •1. Аэродинамические ла - центрические прямоугольные системы координат
- •2. Схема моментов действующих на летательный аппарат в связанной системе координат.
- •2.1. Моменты, действующие на самолет
- •2.2. Устойчивость и управляемость самолета
- •2.3. Принцип действия рулей
- •2.4. Центр тяжести самолета
- •2.5. Центровка самолета
- •2.6. Предельно передняя и предельно задняя центровки самолета
- •2.7. Фокус крыла самолета
- •3. Система продольных моментов действующих на летательный аппарат в полете.
- •3.1. Продольная балансировка самолета
- •3.2. Аэродинамическая компенсация. Триммер
- •3.3. Влияние момента горизонтального оперения на продольную балансировку
- •3.4. Влияние момента силовой установки на продольную балансировку
- •3.5. Продольная устойчивость самолета
- •3.6. Продольная статическая устойчивость по перегрузке
- •3.7. Продольная устойчивость по скорости
- •4. Система поперечных моментов действующих на летательный аппарат в полете. Поперечная балансировка.
- •4.1. Влияние реакции вращения воздушного винта на поперечную балансировку
- •4.2. Поперечная, путевая и боковая устойчивость самолета
- •4.3. Поперечная устойчивость на больших углах атаки
- •4.4. Поперечная управляемость самолета
- •4.5. Особенности поперечной устойчивости и управляемости на больших скоростях полета
- •5. Система боковых моментов действующих на летательный аппарат в полете.
- •5.1. Путевое равновесие самолета
- •5.2. Путевая устойчивость самолета
- •5.3. Путевая балансировка. Влияние воздушной струи от винта на путевую балансировку
- •5.4. Путевая управляемость самолета
- •5.5. Боковая устойчивость и управляемость самолета
- •Лекция 4. Основы динамики полета самолета
- •1. Установившийся прямолинейный полет самолета. Схема сил и уравнения движения.
- •1.1. Горизонтальный полет самолета
- •1.2. Установившийся горизонтальный полет
- •1.3. Скорость, потребная для горизонтального полета
- •1.4. Тяга и мощность, потребные для горизонтального полета
- •2. Диапазон споростей и высот прямолинейного горизонтального полета.
- •2.1. Зависимость потребной тяги и мощности для горизонтального полета от скорости горизонтального полета. Кривые н. Е. Жуковского
- •2.2. Диапазон скоростей горизонтального полета
- •2.3. Первые и вторые режимы горизонтального полета
- •3. Предельные режимы полета самолета
- •3.1. Эволютивная скорость полета
- •3.2. Влияние высоты на потребные скорости горизонтального полета. График потребных и располагаемых мощностей для различных высот
- •3.3. Влияние массы самолета на потребные скорости
- •Лекция 5. Набор высоты и снижение самолета
- •1. Система сил и уравнения движения самолета в наборе высоты
- •1.1. Схема сил, действующих на самолет на подъеме
- •1.2. Скорость, потребная для подъема
- •1.3. Тяга и мощность, потребные при подъеме
- •1.4. Поляра скоростей подъема самолета. Первые и вторые режимы подъема
- •1.5. Режим наиболее быстрого подъема (набора высоты).
- •1.6. Режим наиболее крутого подъема
- •1.7. Барограмма подъема
- •1.8. Потолок самолета
- •1.9. Влияние ветра на подъем самолета
- •2. Система сил и уравнения движения в процессе снижения самолета. Планирование самолета
- •2.1. Силы, действующие на самолет при планировании
- •2.2. Потребная скорость планирования. Предельная скорость самолета
- •2.3. Угол планирования самолета
- •2.4. Поляра скоростей планирования
- •2.5. Дальность планирования
- •2.6. Влияние ветра на планирование
- •2.7. Вертикальная скорость планирования
- •2.8. Первые и вторые режимы планирования
- •Лекция 6. Взлет и посадка самолета
- •1. Схема сил та рівняння руху літака у процесі зльоту. Злітні характеристики літака.
- •1.1. Профиль и элементы взлета. Разбег самолета
- •1.2. Отрыв самолета
- •1.3. Длина разбега
- •1.4. Выдерживание самолета
- •1.5. Подъем самолета
- •1.6. Взлетная дистанция
- •1.7. Взлет с боковым ветром
- •1.8. Взлет аэропоезда
- •1.9. Скорость отрыва
- •1.10. Влияние ветра на взлет самолета
- •1.11. Взлет самолета Як-52 при боковом ветре
- •1.12. Схема сил и уравнения движения на различных этапах взлета
- •2. Взлетная конфигурация самолета
- •3. Схема сил и уравнения движения самолета в процессе в процессе посадки. Посадочные характеристики самолета
- •3.1. Планирование самолета при посадке
- •3.2. Выравнивание
- •3.3. Выдерживание
- •3.4. Пробег самолета
- •4. Посадочная конфигурация самолета
- •Литература
- •Оглавление
1. Подъемная сила крыла. Коэффициент подъемной силы крыла. Угол атаки
Силы,
действующие на самолет.
В полете на самолет действуют (рис. 1)
сила тяги двигателя
,
полная
аэродинамическая сила
,
сила веса
.
Сила тяги
обычно
направлена по продольной оси самолета
вперед.
Рис. 1. Силы, действующие на самолет в полете
Сила
веса приложена в центре тяжести и
направлена по Вертикали к центру Земли.
Полная аэродинамическая сила
является равнодействующей сил
взаимодействия между воздушной средой
и поверхностью самолета. Она разлагается
на три составляющие силы
.
Сила
Y
направлена
перпендикулярно набегающему потоку и
называется подъемной силой. Сила
лобового сопротивления X
направлена
параллельно набегающему потоку в
сторону, противоположную движению
самолета. Боковая аэродинамическая
сила Z
направлена
перпендикулярно плоскости, содержащей
составляющие силы X
и
Y.
Сила R и ее составляющие Y, X, Z приложены в центре давления. Положение центра давления в полете изменяется и не совпадает с центром тяжести. В зависимости от расположения двигателей на самолете сила тяги Р также может не проходить через центр тяжести.
Движение самолета в воздушной среде обычно рассматривается как движение твердого тела, масса которого сосредоточена в его центре тяжести.
Профиль к линиям течения находится под углом атаки α – это угол между хордой профиля и невозмущенными линиями течения Рис. 2. Там, где линии течения сближаются, скорость потока возрастает, а абсолютное давление падает. И наоборот, где они становятся реже, скорость течения уменьшается, а давление возрастает.
Рис. 2. Профиль крыла в потоке воздуха
В разных точках профиля воздух давит на крыло с разной силой. Разницу между местным давлением у поверхности профиля и давлением воздуха в невозмущенном потоке можно представить в виде стрелочек, перпендикулярных контуру профиля, так что направление и длина стрелочек пропорциональна этой разнице. Тогда картина распределения давления по профилю будет выглядеть как показано на рисунке 3.
Рис. 3. Картина распределения давления по профилю.
На нижней образующей профиля имеется избыточное давление – подпор воздуха. На верхней же, - наоборот, разрежение. Причем оно больше там, где выше скорость обтекания. Величина разрежения на верхней поверхности в несколько раз превышает подпор на нижней.
Из картины распределения давления видно, что львиная доля подъемной силы образуется не из-за подпора на нижней образующей профиля, а из-за разряжения на верхней.
Векторная сумма всех поверхностных сил создает полную аэродинамическую силу R, с которой воздух действует на движущееся крыло Рис. 4:
Рис. 4. Подъемная сила крыла и сила его лобового сопротивления.
Разложив эту силу на вертикальную Y и горизонтальную X компоненты, мы получим подъемную силу крыла и силу его лобового сопротивления.
Распределение давления по верху профиля, имеет большой перепад давления с задней половины профиля на переднюю, то есть перепад направлен навстречу потоку обтекания. Начиная с некоторого угла атаки, этот перепад становится причиной возникновения обратного тока воздуха вдоль второй половины верхней образующей профиля Рис. 5:
Рис. 5. Возникновение вихревое обтекания с линиями обратного тока.
В точке В происходит отрыв пограничного слоя от поверхности крыла. За точкой отрыва возникает вихревое обтекание с линиями обратного тока. Происходит срыв потока.
Рис. 6. Коэффициент подъемной силы крыла с носиком разной кривизны.
Подъемную
силу и силу лобового сопротивления
принято рассчитывать через коэффициент
подъемной силы Сy
и коэффициент силы лобового сопротивления:
Cx
и
)
Графическая зависимость коэффициента подъемной силы Сy и коэффициента силы лобового сопротивления Cx от угла атаки показана на рис. 7.
Рис. 7. Коэффициент подъемной силы и коэффициент лобового сопротивления крыла.
Аэродинамическим качеством профиля называется отношение подъемной силы к лобовому сопротивлению. Сам термин качество происходит из функции крыла – оно призвано создавать подъемную силу, а то, что при этом появляется побочный эффект – лобовое сопротивление, явление вредное. Поэтому логично отношение пользы к вреду назвать качеством. Можно построить зависимость Су от Сх на графике Рис. 8.
Зависимость Сy от Cx в прямоугольных координатах называется полярой профиля. Длина отрезка между началом координат и любой точкой на поляре пропорциональна полной аэродинамической силе R, действующей на крыло, а тангенс угла наклона этого отрезка к горизонтальной оси равен аэродинамическому качеству К.
Поляра позволяет очень просто оценивать изменение аэродинамического качества профиля крыла. Для удобства, на кривую принято наносить реперные точки, отмечающие соответствующий угол атаки крыла. По поляре легко оценить профильное сопротивление, максимально достижимое аэродинамическое качество профиля и его другие, важные параметры.
Поляра зависит от числа Re. Свойства профиля удобно оценивать по семейству поляр, построенных в одной сетке координат для различных чисел Re. Поляры конкретных профилей получают двумя способами:
- продувками в аэродинамической трубе;
- теоретическими расчетами.
С точки зрения аэродинамики наиболее выгодным будет такое крыло, которое обладает способностью создавать возможно большую подъемную силу при возможно меньшем лобовом сопротивлении. Для оценки аэродинамического совершенства крыла вводится понятие аэродинамического качества крыла.
Рис. 8. Поляра крыла
Аэродинамическим качеством крыла называется отношение подъемной силы к силе лобового сопротивления крыла на данном угле атаки
(1)
где Y - подъемная сила, кг;
Q - сила лобового сопротивления, кг. Подставив в формулу значения Y и Q, получим
(2)
Чем больше аэродинамическое качество крыла, тем оно совершеннее. Величина качества для современных самолетов может достигать 14-15, а для планеров 45-50. Это означает, что крыло самолета может создавать подъемную силу, превышающую лобовое сопротивление в 14-15 раз, а у планеров даже в 50 раз.
Аэродинамическое
качество характеризуется углом
(см. рис.8).
или
(3)
Угол между векторами подъемной и полной аэродинамической сил называется углом качества. Чем больше аэродинамическое качество, тем меньше угол качества, и наоборот.
Аэродинамическое качество крыла, как видно из формулы (3), зависит от тех же факторов, что и коэффициенты Су и Сх, т. е. от угла атаки, формы профиля, формы крыла в плане, числа М полета и от обработки поверхности.