- •Глава 4. Стадия поиска и оценки месторождений (залежей)
- •4.1. Системы размещения поисковых скважин
- •1. Заложение поисковых скважин в своде складки
- •2. Заложение поисковых скважин на асимметричных складках
- •3. Заложение поисковых скважин по профилю вкрест простирания структуры
- •4. Крест поисковых скважин
- •5. Заложение скважин по методу клина
- •6. Треугольная система расположения поисковых скважин
- •7. Размещение поисковых скважин по радиальным профилям
- •8. Система параллельных профилей поисковых скважин
- •9. Заложение многоствольных поисковых скважин
- •10. Заложение поисковых скважин вдоль длинной оси структур
- •11. Заложение поисковых скважин по диагональному профилю
- •12. Заложение скважин для оценки размеров газовых и нефтегазовых залежей по методу в. П. Савченко
- •13. Заложение поисковых скважин на тектонически нарушенных структурах
- •14. Заложение поисковых скважин в «принципиальном» направлении
- •15. Метод «критического» направления
- •16. Заложение поисковых скважин в зонах вероятного местонахождения контактов
- •17. Зигзаг-профильное заложение поисковых скважин
- •18. Способ опорного профильного бурения
- •19. Метод «шаг поискового бурения»
- •20. Заложение скважин по показателю удельной высоты залежи
- •21. Способ размещения скважин на массивных залежах
- •22. Метод «различия вариантов»
- •23. Заложение поисковых скважин по равномерной сетке
- •24. Заложение поисковых скважин по случайной сетке
- •4.2. Рекомендуемые системы размещения поисковых и оценочных скважин на ловушках различного типа
- •Заложение скважин на неантиклинальных ловушках
- •4.3. Отбор и обработка керна и шлама
- •4.4.1. Изучение вещественного состава пород Петрографические исследования
- •Изучение глинистых минералов
- •4.4.2. Палеонтологические исследования
- •4.4.3. Определение физических свойств пород
- •Изучение трещиноватости пород
- •4.4.4. Нормы отбора образцов на различные виды исследований
- •4.4.5. Петрофизические исследования
- •4.4.6. Геохимические исследования
- •4.5. Геофизические исследования и работы в скважинах
- •4.5.1. Задачи гирс
- •Геофизическое сопровождение вторичного вскрытия пластов должно обеспечить:
- •Испытания пластов приборами на кабеле и инструментом на бурильных трубах должны обеспечить:
- •4.5.3. Методы гирс
- •Электрические виды каротажа (эк)
- •Зонд, у которого расстояние между парными электродами во много раз меньше расстояния от них до непарного электрода, называется градиент-зондом.
- •В скважинах, бурящихся на нефть и газ, потенциалы пс возникают в основном благодаря диффузии ионов солей на контакте двух сред, содержащих растворы различной концентрации.
- •Измеренная э.Д.С. Пропорциональна кажущейся электропроводности Ок исследуемой неоднородной среды:
- •Термокаротаж (высокоточный, дифференциальный)- т
- •Геотермический градиент зависит от плотности теплового потока и удельного теплового сопротивления пород.
- •Сейсмические наблюдения в скважинах
- •Геохимические методы изучения разрезов скважин
- •Изучение технического состояния скважин
- •4.5.4. Комплексы гирс и основные требования к ним
- •Обязательный комплекс гис в скважинах, бурящихся на нефть и газ в Тимано-Печорской провинции.
- •4.6. Геологическая интерпретация промыслово-геофизических исследований
- •Выделение коллекторов, определение эффективных нефте- и газонасыщенных толщин
- •Определение коэффициента пористости
- •Оценка характера насыщения
- •Определение коэффициентов нефте- и газонасыщенности
- •4.7. Вскрытие, опробование и испытание продуктивных горизонтов
- •Опробование пластов в процессе бурения
- •Испытание скважин в эксплуатационной колонне
- •4.8. Исследования отобранных проб нефти, газа, конденсата и воды
- •4.9. Оценка запасов категорий с1 и с2
4.8. Исследования отобранных проб нефти, газа, конденсата и воды
Инструкция по применению классификации запасов месторождений, перспективных и прогнозных ресурсов нефти и горючих газов. М., 1984, 64 с. ГКЗ СССР.
В процессе исследования отобранных проб нефти, газа и конденсата должны быть определены:
— для нефти, приведенной к стандартным условиям методом дифференциального разгазирования,—фракционный и групповой состав, а в пластовых условиях—компонентный состав, содержание (в процентах по массе) силикагелевых смол, масел, асфальтенов, парафинов, серы, металлов, вязкость и плотность, величина давления насыщения нефти газом, растворимость газа в нефти, газосодержание, изменение объема, плотности и вязкости нефти в пластовых и стандартных условиях, температура застывания и начала кипения, коэффициенты упругости нефти; исследование нефти проводится по глубинным пробам, а при невозможности их отбора - по рекомбинированным пробам пластовой нефти; для изучения товарных свойств нефти необходимо отбирать и исследовать специальные пробы;
— для газа (свободного и растворенного в нефти) — плотность по воздуху, теплота сгорания, содержание (в молярных процентах) метана, этана, пропана, бутанов, а также гелия, сероводорода, углекислого газа и азота; состав растворенного в нефти газа определяется при дифференциальном разгазировании глубинных проб нефти до стандартных условий;
— для конденсата (стабильного) — фракционный и групповой состав, содержание парафина и серы, плотность и вязкость при стандартных условиях, давление начала конденсации.
При оценке промышленного значения содержащихся в нефти, газе и конденсате компонентов (этана, пропана, бутанов, серы, гелия, металлов) должны соблюдаться «Требования к комплексному изучению месторождений и подсчету запасов попутных полезных ископаемых и компонентов» (ГКЗ СССР, 1982).
При изучении состава нефти и газа необходимо определять наличие и содержание в них компонентов, оказывающих вредное влияние на оборудование при добыче, транспортировке и переработке нефти и газа (коррозионная агрессивность к металлу и цементу, выпадение парафина, серы, солей, механических примесей и др.).
Отбор устьевых проб нефти, газа и воды производится при всех нефтегазо-водопроявлениях и при опробовании ИПТ не менее 2-х проб из каждого объекта.
Отбор сепараторных проб нефти, газа и конденсата производится не менее 2-х проб при каждом исследовании.
Отбор глубинных проб нефти и воды с замером давлений по стволу и пластовых давлений и температур производится не менее 2-х проб из каждого объекта испытания в колонне.
Лабораторные исследования проб воды. Изучение подземных вод ставится в первую очередь с целью выяснения гидрохимической обстановки, нахождения и сохранения залежей нефти, а также для целей прогноза нефтеносности. В этом отношении изучение подземных вод является обязательным элементом комплекса научно-исследовательских работ в опорном бурении.
При получении из скважин притоков подземных вод должны быть определены: химический состав подошвенных и краевых подземных вод, содержание в них йода, брома, бора, магния, калия, лития, рубидия, цезия, стронция, германия и др., а также состав растворенного в воде газа, дебиты воды, температура, давление, коэффициент упругости вод, газосодержание и другие показатели для обоснования проведения специальных геолого-разведочных работ с целью оценки запасов подземных вод и определения возможности использования их для извлечения полезных компонентов или для теплоэнергетических, бальнеологических и иных нужд.
Особенности химического состава подземных вод галогенных толщ могут быть показательными в отношении содержания в этих толщах отдельных имеющих промышленное значение элементов, в частности калия. В отдельных случаях вскрываемые скважинами пресные подземные воды могут представлять интерес для водоснабжения населенных пунктов. Даже сильно минерализованные подземные воды могут быть иногда использованы для технических целей, и в первую очередь для глубокого бурения, например для изготовления глинистого раствора. Подземные воды даже при относительно незначительном их притоке могут заметно влиять на физические свойства глинистого раствора, а потому заслуживают внимания и с этой точки зрения.
Результаты изучения подземных вод, вскрытых скважиной, будучи использованы в совокупности с прочими данными по гидрогеологии определенного района или даже целой обширной области, имеют большое значение для понимания закономерностей распределения различного типа подземных вод, что в свою очередь важно в нефтепоисковых целях.
Изучение подземных вод должно проводиться в тесной связи с изучением литологических особенностей разреза, с определениями пористости и проницаемости пород и увязываться с данными электрокаротажа. Анализы солевого состава подземных вод и связанных с ними растворенных и свободных газов должны представляться одновременно.
По каждому испытанному горизонту исследуются две пробы воды: первая, отобранная после установления постоянства ее химизма, и вторая —после дополнительного отбора жидкости.
Лабораторному изучению подвергаются отобранные на месте бурения пробы пластовых вод, полученные при испытании скважины или отобранные во время бурения (при переливании или фонтанировании водой).
При выполнении анализов, которые производятся в соответствии с общепринятыми указаниями руководств по аналитической химии и гидрохимии, делают следующие определения.
А. Полевые: 1. Описание физических свойств воды: цвет, прозрачность, характер осадка или мути, запах.
2. При наличии запаха H2S последний определяется на месте отбора пробы и затем в стационарной лаборатории.
Примечание. Пробу следует брать после откачки из скважины трех объемов технической воды, после чего не менее трех раз проверяется постоянство состава С1 и уд. веса воды.
Б. Лабораторные: 1. Уд. вес воды.
2. рН — концентрация водородных ионов.
3. Жесткость (общая, постоянная и временная).
4. Полный химический анализ с определением микрокомпонентов СГ, SO/', НСО,,', СОз", Са", Mg--, К-, Na", Вг', В-, Г, NH4, Fe--, Fe", H2S, SiO2, NO2, NО3, нафтеновые кислоты, окисляемость, радиоактивность.
5. Спектральный анализ сухого остатка, полученного путем выпаривания воды.
Методом люминесцентно-битуминологического анализа определяется качественный состав содержащихся в воде органических веществ. Результаты химического анализа даются в ионной форме (за исключением полуторных окислов, кремнезема и нафтеновых кислот) в весовых количествах; для слабоминерализованных вод с сухим остатком до 5 г/л — в мг на 100 г и для всех остальных вод в г на 100 г.
Весовые качества пересчитываются в миллиграмм-эквивалентную и процент-эквивалентную формы и эти данные также приводятся в результатах анализов. Общая минерализация воды исчисляется суммированием весовых количеств всех компонентов и также включается в результаты анализа.
