Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 4.doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
1.57 Mб
Скачать

Изучение технического состояния скважин

Техническое состояние скважин определяется фактическим диаметром ствола скважины на отдельных участках, каче­ством цементирования обсадной колонны, возможными нару­шениями колонны.

Инклинометрия скважин – ИС (определение искривления ствола скважи­ны) проводится для контроля за пространственным положе­нием ствола скважины и получения данных, необходимых при геологических построениях.

На любой глубине положение оси скважины в пространстве можно определить углом отклонения оси от вертикали и магнитным ази­мутом, отсчитанным по ходу часовой стрелки углом между направлением на магнитный север и горизонтальной проекцией элемента оси скважины, взятого в сторону увеличения глубины. Таким образом, определение искривления сводится к измерению углов по стволу скважины, для чего применяют специальные приборы, называемые инклинометрами.

Из большого числа существующих типов инклинометров для измерения искривления нефтяных и газовых скважин наиболее широко применяются такие, в которых азимут скважин определяют по земному магнитному полю с помощью магнитной стрелки. Очевидно, эти приборы применимы для определения азимута только в необсаженных скважинах, в разрезе которых отсутствуют магнитные породы.

Точность измерений инклинометром угла 6 составляет ±0,5°, азимута ±4°.

Искривление скважины замеряют в точках через одинаковые интер­валы, равные 10 м в наклонно направленных скважинах и 25 м в обыч­ных (искривление до 10 °С). Результаты измерений представляют в виде таблицы значений углов.

Создана конструкция инклинометра, предназначенного для непре­рывного автоматического измерения магнитного азимута и зенитного угла в функции глубины скважины с регистрацией результатов в циф­ровом виде. Точность измерений угла ±24', азимута ±2°.

По результатам замеров строится инклинограмма — проекция ствола скважины на горизонтальную плоскость, обычно в масштабе 1:200. На­чальную и конечную точки инклинограммы соединяют. Эта прямая показывает общее смещение забоя скважины от верти­кали. Результаты инклинометрии используют для введения поправок на удлинение при расчете отметок кровли выделя­емых пластов.

Рис. 4.5.14. Горизонтальная проекция ствола скважины. Забой скважины 1160 м; смещение забоя 33,9 м; ази­мут смещения 173°; удлинение сква­жины 1,7 м

Измерение диаметра скважины - ДС (КВ) (кавернометрия) проводят для оценки состояния ствола скважины и выбора интервалов установки испытателя пластов. Практика бурения нефтяных и газовых скважин показывает, что фак­тический диаметр скважины часто отличается от номинального (диа­метра долота, которым скважина бурилась). При этом наблюдается как уменьшение, так и увеличение фактического диаметра по сравнению с номинальным.

Для решения различных задач, связанных с техническим состоянием скважин, а также для интерпретации материалов геофизических исследований необходимо знать фактический диаметр скважины. По данным кавернометрии определяют количество цемента, необходимое для цементи­рования обсадной колонны. Данные о фактическом диаметре скважин необходимы при обработке диаграмм большинства геофизических методов. Диаметр скважины измеряют при помощи каверномеров. На рис. 4.5.15 приведена схема конструкции наиболее широко применяемого каверно­мера типа СКС.

Рис. 4.5.15. Схема конструкции (а) и измерительная схема (б) каверномера:

1— измерительный рычаг; 2 — короткое плечо с фигурным кулачком; 3 — шток; 4 — пружина; 5 — реостат; 6 — ползунок; Л, М, N — точки подключения к измери­тельной схеме каверномера токовой (Л) и измерительных (М, И) жил кабеля; В заземление токовой цепи на поверх­ности

Каверномер имеет четыре измерительных рычага, расположенных попарно в двух взаимно перпендикулярных плоскостях. Каждый из рычагов имеет два плеча — короткое и длинное. Коротким плечом является кулачок, в который упирается шток, связанный с ползунком общего для всех рычагов реостата. Под действием пружины шток давит на кулачок и поворачивает рычаг до тех пор, пока конец длин­ного плеча не прижмется к стенке скважины. Форма кулачков выбра­на такой, что перемещение штоков и соответствующее им изменение вводимого в измерительную цепь сопротивления на реостате пропор­циональны изменению диаметра скважины.

Каверномер спускают в скважину со сложенными рычагами. Это достигается обычно тем, что на длинные концы рычагов надевают насадку в виде кольца. При подъеме прибора с забоя вследствие трения о стенки скважины насадка соскальзывает с рычагов, осво­бождая их.

Диаметр скважины измеряется при подъеме каверномера. Измерение сводится к регистрации при постоянной силе тока питания изменения по стволу скважины разности потенциалов, снимаемой с датчика кавер­номера (см. рис. 4.5.15).

Применяют также модификацию описанного каверномера — скважинный каверномер — профилемер (СКП). С помощью СКП регистри­руют одновременно две кривые изменения диаметра скважины в двух взаимно перпендикулярных плоскостях в функции глубины скважины. По участкам расхождения кривых выявляют интервалы ствола сква­жины овального сечения (интервалы желобообразования).

По результатам измерений составляют кавернограмму. Кавернограммы используют для различных целей. По ним опреде­ляют количество цемента, необходимое для цементирования обсадной колонны, оценивают состояние ствола скважины и выбирают наиболее благоприятные интервалы для установки испытателя пластов и башмака колонны. Данные о фактическом диаметре скважины, получаемые из кавернограмм, необходимы при обработке диаграмм большинства гео­физических методов.

Кавернограммы широко используют также для уточнения геологи­ческого разреза скважин. По характеру изменения диаметра скважины горные породы разделяются на три группы. К первой относятся плотные породы (плотные песчаники, известняки, доломиты), в которых фактический диаметр близок к номинальному. Вторую группу составляют породы, в которых наблюдается увеличение фактического диаметра по сравнению с номинальным: глины, размываемые промывочной жидкостью и обрушивающиеся вследствие набухания глинистых частиц; растворяющиеся в промывочной жидкости каменная и калийная соли; кавернозные известняки и доломиты. К третьей группе относятся проницаемые песчаники, известняки, доломиты, против которых диаметр скважины уменьшается в результате образования на стенке скважины глинистой корки.

По характеру изменения диаметра скважины горные породы разделяют на три группы. Первую составляют плотные породы (известняки, доломиты, плотные песчаники), в которых фактический диаметр близок к номинальному. Во вторую группу входят породы, в которых фактический диа­метр больше номинального (глины, соли). К третьей группе относят проницаемые породы (известняки, песчаники и др.), против которых в результате образования глинистой корки фактический диаметр меньше номинального.

Контроль цементирования и технического состояния обсадных колонн

После окончания строительства скважины в ней проводятся геофизи­ческие исследования для контроля цементирования и технического состояния обсадной колонны и получения базовых исходных показаний, используемых при изучении динамики технического состояния скважины в процессе ее эксплуатации. С этой целью применяют аппаратуру акустического контроля и гамма-гамма-контроля цементирования скважин и скважинный толщиномер для выявления дефектов в обсадной колонне.

При рассмотрении методов контроля цементирования необходимо учитывать следующее.

1. Дефекты цементного камня за колонной можно разделить на объемные (каверны, каналы) и щелевые. Аппаратура гамма-гамма-контроля позволяет установить интервалы распространения только объемных дефектов, тогда как аппаратура акустического контроля — интервалы объемных и щелевых дефектов, не различая их между собой. Комплексное использование обоих видов контроля позволяет однозначно классифицировать дефекты цементирования.

2. Дефекты, выявляемые по данным акустического и гамма-гамма-контроля цементирования, характеризуют лишь возможность воз­никновения затрубных циркуляций при определенных градиентах давления между соседними пластами. Наличие затрубной циркуляции должно быть подтверждено данными других геофизических методов, служащих для выявления заколонных перетоков.

Контроль обсадных колонн. Гамма-гамма-толщиномер (ГГТ) пред­ставляет собой зонд ГТК, состоящий из коллимированных источника и детектора гамма-излучения на расстоянии от источника, меньшем 10 см. Благодаря малой длине зонда и коллимации его элементов среда за колонной не влияет на показания метода.

Диаграммы ГГТ используют при интерпретации цементограмм; для паспортизации обсадных колонн в скважинах; определения место­положения муфт, центрирующих фонарей и участков с механическим и коррозионным разрушением труб.

Гамма-гамма-контроль цементирования. При гамма-гамма-контроле цементирования (ГГЦ) регистрируют вдоль ствола скважины интенсив­ность рассеянного гамма-излучения по периметру колонны зондом, состоящим из источника гамма-излучения и трех детекторов, расположенных на оди­наковом расстоянии от источника, в плоско­сти, перпендикулярной к продольной оси прибора. Каждый из детекторов коллимирован так, что отмечает рассеянное гамма-излучение, поступающее в основном только из сектора колонны с радиальным углом 45-60°, находящегося против детектора. С помощью схемы коммутации детекторы поочередно в круговой последовательности включаются в измерительную цепь. Прибор снабжен фонарями, центрирующими его в колонне.

Рис. 4.5.16. Схематические диаграммы ГГЦ:

1 — обсадная колонна на стенке скважины, за колонной вода; 2—обсадная колонна центрирована, за колонной вода; 3 — обсадная колонна на стенке скважины, за колонной цемент; 4 — обсадная колон­на центрирована, за колонной цемент; 5 — показания кривой ГГЦ против большой каверны, заполненной цементом; 6 — линия цемента, проведенная по мак­симальным показаниям кривой. ГГЦ в большой каверне, заполненной цементом

Так как плотность цементного камня (1,8-1,9 г/см3) меньше плотности горных пород (2,3-2,9 г/см3), то в зацементиро­ванной части колонны наибольшими показаниями будут отмечаться каверны. Следовательно, кривая ГГЦ в этом интервале всегда распола­гается левее линии, проходящей через наибольшие показания в каверне с цементом (линия цемента на рис. 4.5.16). Исключение составляют случаи наличия в цементном камне объемных дефектов (каверны, каналы, заполненные жидкостью), против которых кривая выйдет вправо за линию цемента, так как плотность жидкости 1,2 г/см. Максимальные показания, превышающие показания в каверне с цементом, и наибольшие амплитуды кривой при эксцентричном положении колонны в скважине соответствуют интервалам, где затрубное пространство заполнено водой или промывоч­ной жидкостью.

Таким образом, измерения аппаратурой ГГЦ позволяют определить высоту подъема цемента за обсадной колонной, выявить участки с односторонним заполнением затрубного пространства и оценить степень центрирования колонны в скважине.

Измерения прибором акустического контроля цементирования. Скважинный прибор акустического контроля цементирования АКЦ пред­ставляет собой двухэлементный зонд (излучатель упругих колебаний — приемник) длиной около 2,5 м. С помощью этого зонда регистрируются следующие кривые:

1) Ак— кривая амплитуд продольной волны по колонне, измеряемых во временном интервале длительностью 120 мкс, считая от момента прихода на приемник вступления продольной волны по колонне;

2) tр — кривая времени пробега от излучателя.до приемника про­дольной волны, приходящей к приемнику с заметной амплитудой, превышающей уровень дискриминации измерительного канала;

3) Ар — кривая амплитуд продольной волны, приходящей к приемнику от излучателя за время tр.

Все три кривые регистрируются на одном бланке, называемом диаграммой АКЦ. По диаграммам АКЦ определяют высоту подъема цемента за колонной и оценивают качество ее цементирования.

Аппаратура АКЦ чувствительна к щелевым дефектам цементного кольца. Поэтому качество цементирования, по данным АКЦ, принято выражать термином «сцепление» (хорошее, плохое, отсутствует). Этот термин, однако, следует понимать в широком смысле, т. е. не только как характеристику сцепления цементного кольца с колонной и породами, но также как наличие или отсутствие в цементном кольце объемных дефектов (каналов, пустот, повышенной проницаемости цементного камня и т. п.), от которых показания АКЦ также зависят.

Хорошее сцепление означает жесткий контакт цементного камня со всей площадью колонны и породы при отсутствии заметных объемных дефектов в цементном кольце. При этих условиях обеспечивается надежная изоляция проницаемых пластов между собой. Отсутствие сцепления означает либо наличие зазора более 0,05 мм между цемент­ным кольцом и колонной, либо отсутствие цемента в затрубном про­странстве по радиальному углу более 300°. Плохое сцепление соответ­ствует промежуточным дефектам цементирования.

Часто интервалы плохого сцепления при­урочены к кавернам.

Геофизические методы применяют также для решения других задач, связанных с контролем технического состояния скважин либо возникаю­щих в процессе бурения и эксплуатации скважин. К ним относятся: определение места поглощения промывочной жидкости; выделение интер­валов затрубного движения жидкости; контроль гидроразрыва пластов и др.

Высоту подъема цемента за колонной контролируют также с по­мощью электротермометра (ОЦК).

Дефекты в колонне после цементирования определяют ме­тодами термометрии и закачкой меченых жидкостей (в том числе включающих радиоактивные изотопы). Кроме того, геофизические методы применяют для определения мест по­глощения промывочной жидкости, выделения интервалов затрубного движения флюидов, контроля за гидроразрывом пластов и др.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]