Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 4.doc
Скачиваний:
0
Добавлен:
19.01.2020
Размер:
1.57 Mб
Скачать

Изучение глинистых минералов

Для расшифровки минералогического состава тонких фракций, слагающих основную массу глин, не всегда достаточно одного оптического анализа. Поэтому для типо­вых образцов желательно применять комплексный метод исследования глин, слагающийся из термического, рентгено­скопического, химического и других видов анализа.

Изучение минералогического состава глин, подстилаю­щих и перекрывающих пласты, содержащие нефть, необ­ходимо для понимания условий образования нефтяных и газовых месторождений.

Минеральный состав глинистых горных пород производится в специальных лабораториях с применением различных методов, не являющихся обязательным элементом комплексного исследования материалов бурения.

Основным методом является метод окрашивания, потому что он является массовым и его можно применять также и в полевых условиях.

В результате испытаний методом окрашивания все породы по составу глинистых минералов, с учетом глубины залега­ния этих пород и их геологических особенностей, разби­ваются на группы. Представители проб каждой группы про­веряются другими методами, к которым относятся:

а) термический, составляющий от общего количества окрашенных проб 10—20%;

б) рентгеноструктурный — 5 %;

в) электронномикроскопический —15—30%;

г) оптический, на специально приготовленных ориенти­рованных агрегатах —10—20%.

Выборочный химический анализ

Исходя из результатов минералого-петрографического изучения горных пород, в тех случаях, когда воз­никают неясности в отношении минералогического состава горных пород, должны производиться выборочные хими­ческие анализы.

Химическому анализу следует подвергать горные породы и в тех случаях, когда на основании предшествующего ми­кроскопического, петрографического исследования и спек­трального анализа выяснилась необходимость более деталь­ного изучения химического состава горных пород.

В зависимости от возникших задач химические выбороч­ные анализы могут носить различный характер:

качествен­ный или количественный анализы для выяснения содержа­ния тех или иных определенных элементов,

шестикомпонент­ный анализ (количественное определение содержания не­растворимого остатка, Р2О3, СаО, Мg0, СО2 и S03),

полный химический анализ.

Встреченные в скважинах полезные ископаемые: угли, горючие сланцы, железные, марганцевые и прочие руды, алюминиевое и химическое сырье — подвергаются полному химическому анализу для выясне­ния их промышленных качеств.

Спектральный анализ

Спектральный анализ за последнее время начал широко применяться в нефтяной геологии. Являясь быстрым физическим методом определения химического состава ве­щества, спектральный анализ может заменить длительные и трудоемкие химические анализы. С помощью спектральных методов анализа можно быстро и точно дать химическую характеристику породы с определением всех металлов и не­которых других элементов.

Спектральный анализ позволяет визуально по спектро­грамме сказать об ориентировочном содержании этих эле­ментов. С помощью количественного спектрального анализа можно произвести точное количественное определение ми­кроэлементов, содержащихся в исследуемом образце. Спек­тральным анализом могут быть выявлены промышленные концентрации цветных, редких, рассеянных и радиоактив­ных элементов.

Спектральный анализ является незаменимым, будучи высокочувствительным методом при использовании весьма незначительных навесок.

Работами А. П. Виноградова, А. Д. Архангельского, Л. А. Гуляевой, С. М. Катченкова и др. показано большое значение микроэлементов, содержащихся в водах, породах, золах битумов и нефтей, для целей корреляции, для геохи­мической характеристики битумов, нефтей и вмещающих их пород и для выяснения процессов миграции элемен­тов.

В осадочных породах следует определять следующие элементы: Al, Mg, Ca, Si, Fe, P, Mn, Ni, V, Ti, Cu, Na, К, Li, Ba, Sr, В, Сг, Zr и в пределах верхних 500 м разреза — U, Th, Tr, Mo, Ga, Ge, Sc, Tl, Sn, Be, Pu, Zn; в изверженных породах, кроме перечисленных элементов, еще — Zn, Pb, Sn, Cd, Ge, Mo, Co, In, Be, Bi, W, Ag, As, Au, Y, Те, Ga, Та, Nb.

Спектральный анализ может быть использован при об­работке материалов бурения как для вспомога­тельных целей, так и для последующих, более детальных исследований на те или другие элементы, имеющие практи­ческое значение. Спектральный анализ имеет большое зна­чение для самостоятельного решения целого ряда геохими­ческих задач.

Спектральный метод анализа облегчает работу химика-аналитика, так как быстро отвечает на вопрос, в каком количестве находится определяемый элемент в породе и при­сутствуют ли элементы, мешающие проведению химиче­ского анализа.

Образцы для спектрального анализа пород долж­ны отбираться из каждой литологической разности, а в слу­чае литологически однородной толщи через 1-5 м, в за­висимости от степени однородности. Более детальному опро­бованию должны подвергаться слои, обогащенные органи­ческим веществом, с выделениями пирита и других сульфи­дов и в особенности с повышенной гамма-активностью (по гамма-каротажным диаграммам). По таким частям разреза следует образцы на исследование отбирать через 50 см и в первую очередь по интервалам, в которых упомянутые признаки особенно отчетливы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]