- •Строительные материалы. Классификация.
- •Состав и структура строительных материалов.
- •Параметры состояния материалов (истинная, средняя, насыпная, относительная плотности, пористость, межзерновая пустотность).
- •Свойства строительных материалов. Взаимосвязь состава структуры, параметров состояния и свойств материалов.
- •5. Гидрофизические свойства (влажность, водопоглощение, гигроскопичность, водостойкость, морозостойкость, влагоотдача, водопроницаемость, водонепроницаемость, газо- и паропронецаемость).
- •Теплофизические свойства. Радиационная стойкость.
- •Деформационные свойства. Реология.
- •Прочностные свойства строительных материалов.
- •Обобщающие эксплуатационные свойства строительных материалов и изделий.
- •10 Вопрос: Классификация и основные виды горных пород
- •12 Вопрос: Добыча и переработка горных пород
- •Материалы и изделия из горных пород
- •13 Вопрос: Защита изделий из горных пород.
- •14 И 16 вопросы: Керамические материалы и изделия. Классификация сырье.
- •15 Вопрос: Технология получения керамического кирпича. Керамический кирпич
- •Преимущества керамического рядового кирпича
- •Преимущества керамического облицовочного кирпича
- •Недостатки керамического кирпича
- •Технология производства
- •Организация кирпичного производства Керамический кирпич
- •Сушилки камерные
- •Сушилки туннельные
- •Процесс сушки
- •Процесс обжига
- •20 Вопрос: Ситаллы, шлакоситаллы. Изделия из каменных расплавов.
- •21 Вопрос: Металлические материалы. Классификация.
- •22 Вопрос: Строение металлов. Свойство металлов.
- •23 Вопрос: Стальная арматура для железобетонных изделий
- •Классификация
- •По назначению
- •По ориентации в конструкции
- •По условиям применения
- •Применение
- •24 Вопрос: Минеральные вяжущие вещества. Классификация. Общая технология производства.
- •Неорганические вяжущие материалы
- •Гидравлические вяжущие вещества
- •Вяжущие автоклавного твердения
- •Кислотостойкие вяжущие
- •25 Вопрос: Гипсовые вяжущие вещества.
- •26 Вопрос: Воздушная известь.
- •27 Вопрос: Жидкое (растворимое) стекло. Магнезиальные вяжущие.
- •28 Вопрос: Гидравлическая известь. Роман – цемент.
- •32 Вопрос: Коррозия цементного камня.
- •33 Вопрос: Разновидности портландцемента.
- •Виды строительных растворов
- •Приготовление строительных растворов
- •38 Вопрос: Разновидности бетона.
- •Тяжелый бетон. Состав, которым обладает тяжёлый бетон
- •Состав легкого бетона
- •Подбор состава легкого бетона
- •Материалы для изготовления легких бетонов
- •Классификация
- •Цементно-полимерный бетон
- •Технология
- •Свойства
- •Использование Магнезиальный фибролит
- •Теплоизоляционно-конструктивный фибролит
- •Технология производства
- •Разновидности
- •Характеристики
- •Применение
- •39 Вопрос: Силикатные материалы и изделия. Силикатный кирпич.
- •40 Вопрос: Ячеистый силикатный бетон. Плотный силикатный бетон.
- •41 Вопрос: Асбестоцементные материалы и изделия.
- •42 Вопрос: Лесные материалы (состав, строение и свойства)
- •43 Вопрос: Пороки древесины и защита древесины от гниение, поражения насекомыми и возгорания.
- •44 Вопрос: Материалы и изделия из древесины.
- •45,46 Вопрос: Битумные и дегтевые вяжущие вещества. Материалы и изделия.
- •47, 48 Вопрос: Полимерные материалы. Связующие вещества. Технология производства пм . Материалы и изделия. Полимерные материалы
- •]Исходные полимерные материалы
- •Пластиковые панели — панели пвх
- •Полимерные трубы
- •Полимерные мастики и бетоны
- •49 Вопрос: Гидроизоляционные материалы. Гидроизоляционные и кровельные материалы на основе битумов и полимеров
- •Гидроизоляционные материалы
- •Основные типы теплоизоляции
- •Применение теплоизоляции
- •Теплоизоляция стен
- •Материалы для изготовления теплоизоляции
- •51 Вопрос: Неорганические теплоизоляционные материалы.
51 Вопрос: Неорганические теплоизоляционные материалы.
Основные положительные свойства неорганических теплоизоляционных материалов - огнестойкость и биостойкость -сочетаются с высокими теплоизоляционными качествами. Из неорганических теплоизоляционных материалов наиболее распространены минеральная вата и изделия из нее,стеклянная вата, ячеистые бетоны, пеностекло, вспученный перлит.
Минеральная вата и изделия из нее по объему производства занимают первое место среди всех теплоизоляционных материалов благодаря хорошим теплоизоляционным свойствам, неограниченной сырьевой базе и относительной простоте производства.
Минеральная вата - это материал, который состоит из тонких стекловидных волокон, получаемых из расплавленных горных пород (базальтов, габбро, диабазов, доломитов и других - каменная вата) или металлургических шлаков - шлаковая вата. Теплоизоляционные свойства минеральной ваты обусловлены высоким содержанием воздуха между волокнами (до 95 %).
Производство минеральной ваты состоит из двух основных технологических процессов: получения силикатного расплава и превращения этого расплава в волокна диаметром 1...12 мкм.
В большинстве случаев силикатный расплав изготовляют в вагранках - шахтных плавильных печах, в которые минеральное сырье и топливо (кокс) загружают поочередно. Расплав с температурой 1300... 1400 °С непрерывно выпускают из нижней части печи.
Существуют три способа превращения расплава в минеральное волокно: дутьевой, центробежный и комбинированный.
Сущность дутьевого способа заключается в том, что на струю жидкого расплава, вытекающего из летки вагранки, воздействует струя водяного пара или газового потока. Центробежный способ основан на использовании центробежной силы вращающихся валков или дисков для превращения струи расплава в тончайшие минеральные волокна толщиной 2...7 мкм и длиной 2...40 мм.
Комбинированный способ представляет собой сочетание двух предыдущих и позволяет получать наиболее качественную вату диаметром до 1 мкм и без корольков (неволокнистых включений). Полученные волокна осаждаются в камере волокноосаждения на движущуюся ленту.
Выпускают вату в виде бесформенной волокнистой массы желтовато-серого или зеленовато-серого цвета. По плотности ее подразделяют на марки 80 и 100. Теплостойкость минеральной ваты в зависимости от исходного сырья достигает 700... 1000 °С. Она трудоемка в применении и склонна к слеживанию, поэтому из нее в основном выпускают готовые изделия.
Минераловатные изделия получают путем склеивания волокон различными связующими (синтетическими смолами, битумом, крахмалом) или, реже, прошивкой минеральной ваты, покрытой с двух или одной стороны бумагой (сеткой или тканью). Выпускают гибкие, полужесткие, жесткие и твердые минераловатные изделия. К гибким изделиям относят минеральный войлок, прошивные маты и теплоизоляционный шнур.
Минеральный войлок получают путем уплотнения минеральной ваты, смоченной битумной эмульсией или синтетической смолой. Он бывает марок от 100 до 200 в виде рулонов или листов толщиной 30.. .60 мм.
Минераловатные прошивные маты - полотнища из минеральной ваты с обкладками с одной или двух сторон, прошитые проволокой или нитью. Выпускаются длиной 1000...2500 мм, шириной 500...2500 мм, толщиной 40... 120 мм, плотностью З0...130кг/м3.
Минераловатные плиты различной жесткости производят путем пропитки минераловатного ковра синтетическим связующим и уплотнения с последующей термообработкой; плотность плит в зависимости от вида изделий составляет 50...250 кг/м3.
Минеральную вату и изделия из нее применяют для утепления наружных конструкций зданий, а также для устройства звукоизолирующих слоев в перекрытиях и внутренних стенах зданий. В промышленном строительстве минеральную вату и изделия из нее, кроме того, применяют для изоляции холодильных камер, тепловых сетей (трубопроводы горячей воды, пара и т. п.), оборудования теплоэлектростанций, котельных и др.
Каменная вата на базальтовой основе ROCKWOOL производства Дании применяется для теплоизоляции коммуникаций, перекрытий, кровель, а также для утепления фасадов. Изделия из нее снижают уровень шума лучше, чем из минеральной ваты, на 20...30 %. Они устойчивы к воздействию влаги: благодаря низкому водопоглощению влага практически не изменяет характеристик изделий и не влияет на долговечность.
Стеклянная вата и изделия из нее. Стеклянная вата - материал, состоящий из беспорядочно расположенных стеклянных волокон, полученных из расплавленного сырья. Сырьем для производства стекловаты служат сырьевая шихта для варки стекла (кварцевый песок, кальцинированная сода и известняк) или стеклянный бой. Производство стеклянной ваты и изделий из нее состоит из следующих технологических процессов: варка стекломассы в ванных печах при температуре 1300... 1400 °С, изготовление стекловолокна и формование изделий.
Стеклянное волокно значительно большей длины, чем волокна минеральной ваты, и отличается большими химической стойкостью и прочностью. Плотность стеклянной ваты -75... 125 кг/м3, теплопроводность - 0,04...0,052 Вт/(м • °С), предельная температура применения стеклянной ваты составляет 450 °С. Из стекловолокна выполняют маты, плиты, полосы и другие изделия, в том числе тканые.
В Республике Беларусь находит широкое применение стекловата ISOVER производства Финляндии и России. Стекловата используется для теплоизоляции полов, стен, потолков в кирпичных, бетонных и других конструкциях, а также в качестве звукоизоляции в конструкциях с двойной стеной.
Пеностекло (ячеистое стекло) - легкий и прочный материал ячеистого строения с пористостью 80...90 %. Его получают из стеклянного боя или специально сваренного стеклогранулята с добавлением газообразователей (0,5...3 % мела или угля от массы стекла). Полученную смесь измельчают в мельнице, загружают в формы и нагревают до вспенивания, а затем быстро охлаждают. Газообразователь, разлагаясь или сгорая, выделяет газообразные продукты, вспенивающие размягченные тонкодисперсные частицы стекла, при охлаждении которых образуется пеностекло. Поры в пеностекле замкнутые, поэтому оно практически не поглощает влагу и не тонет в воде. Пеностекло хорошо обрабатывается - пилится, сверлится.
Плотность пеностекла - 200...300 кг/м3; прочность при сжатии - 3...6 МПа, теплопроводность - 0,06...0,12 Вт/(м - °С). Промышленность выпускает пеностекло в виде плит толщиной около 100 мм и размером 500x1000 мм. Применяют пеностекло для тепловой изоляции при возведении гидротехнических сооружений, машинных отделений судов, наружных стен и покрытий гражданских и промышленных зданий.
Теплоизоляционные плиты из ячеистого бетона производят по технологии, изложенной в 8.2. Они выпускаются следующих марок по плотности: 250; 300; 350 и 400; теплопроводность - 0,07...0,11 Вт/(м • °С); прочность при сжатии - от 0,6 до 2 МПа. Плиты имеют размеры (мм): длина от- 500 до 1000, ширина - от 400 до 600 и толщина - от 80 до 240.
Плиты из ячеистого бетона применяют для утепления стен из мелкоштучных материалов, кровли, изготовления перегородок и теплоизоляции оборудования с температурой до 400 °С.
Вспученный перлит получают обжигом природных вулканических стекол - перлита, обсидиана, витрофира. Исходную породу дробят до заданных размеров, подсушивают в сушильном барабане, а затем обжигают в печи при температуре 900... 1200 °С. Вспучивание зерен происходит за счет интенсивного удаления химически связанной воды (в виде пара) в момент перехода перлита в пиропластическое состояние. Перлит является стеклом и при нагреве размягчается.
Частицы сыпучих материалов светлые, часто белые. Пористость перлитового песка - свыше 90 %, средняя плотность -75...500 кг/м3. Теплопроводность перлитового песка зависит от его средней плотности и составляет 0,047...0,093 Вт/(м • °С). Вспученный перлит легко впитывает воду и медленно ее отдает. Водопоглощение перлита очень высокое и возрастает с уменьшением его частиц: для зерен крупнее 2 мм - 300 % по массе, 0,25...0,5 мм - более 800 % по массе.
Песок применяют для устройства теплоизоляционных засыпок, а также в составе изделий - битумоперлита, цементоперлита, пластоперлита, керамоперлита и других, перлитовый щебень - для изготовления легкого бетона. Температура применения засыпок из вспученного перлита - (-200.. .+800) °С.
Минеральная вата — спутанное волокно (диаметром 5-12 мкм), получаемое из расплавленной массы горных пород или шлаков либо в процессе распыления её тонкой струи паром под давлением. Минеральную вату используют в качестве теплоизоляции поверхностей с температурой от −200 °C до +600 °C.
Стеклянная вата — спутанное волокно, получаемое из расплавленного стекла. Её используют для приготовления теплоизоляционных изделий (матов, плит) и теплоизоляции поверхностей.
Пеностекло — пористый лёгкий материал, получаемый путём спекания смеси стекольного порошка с газообразователями (известняком, каменным углём). Изготавливают его с открытыми и закрытыми порами. Плиты из пеностекла применяют для теплоизоляции стен, покрытий, перекрытий, утепления полов.
Коэффициент теплопроводности современного пеностекла сопоставим с пенопластами: от 0,042 Вт/(м*К) при средней плотности от 100 до 200 кг/м³. Температура применения: −180 до +480 (нижний предел обусловлен конденсацией газовой фазы в ячейках пеностекла, верхний — началом размягчения стеклянной матрицы).
Наиболее качественным считается пеностекло с мелкими закрытыми порами одинакового размера.
Пеноизол — универсальный утеплитель, который относится к новому поколению карбомидных теплоизоляционных пенопластов, имеет высокие теплоудерживающие способности, низкую объёмную плотность, стойкость к действию микроорганизмов и грызунов.
52 вопрос: Органические теплоизоляционные материалы.
применяют для теплоизоляции конструкций при температуре, как правило, не более 100 °С.
В сравнении с неорганическими органические материалы характеризуются меньшей теплопроводностью при одинаковой средней плотности, однако имеют невысокие предельную температуру применения (60... 150 °С) и биостойкость, являются горючими.
Древесно-волокнистые плиты изготовляют измельчением неделовой древесины или других растительных материалов (камыша, костры, соломы) в водной среде до получения волокнистой массы. В смесь добавляют парафиновую эмульсию, антисептики и антипирены. Из этой массы отливкой формуют плиты, а затем сушат.
Таким образом производятся мягкие изоляционные плиты плотностью от 100 до 400 кг/м3. Если перед сушкой плиты уплотняют или высушивают под горячим прессом, то получают полутвердые и твердые плиты меньшей толщины, но большей прочности.
Прочность высокопористых изоляционных плит обеспечивается за счет переплетения тонких и длинных волокон между собой.
Прочность других видов плит достигается путем применения горячего прессования, при котором древесные волокна склеиваются выделяющимися из древесины клеющими веществами.
Мягкие плиты выпускают размерами: длина-1220.. .3000 мм, ширина - 1220 мм и толщина - 8, 12 и 16 мм.
Льнокостричные плиты по свойствам и технологии производства аналогичны мягким ДВП. Для улучшения свойств изделий в размолотую волокнистую массу вводят 5...7% грубого льняного волокна Средняя плотность плит составляет 200...220кг/м3.
Применяют древесно-волокнистые плиты в конструкциях сборно-щитовых зданий, для изоляционно-отделочной обшивки стен, а также устройства звукоизоляционных прокладок в конструкциях пола.
Газонаполненные пластмассы относятся к наиболее эффективным теплоизоляционным материалам. Их получают вспениванием различных полимеров: полистирола, поливинилхлорида, фенолоформальдегидных смол, полиуретана. Различают пено-пласты, в структуре которых преобладают замкнутые поры, и поропласты - с преимущественно сообщающимися порами. Пе-нопласты имеют самую низкую теплопроводность среди известных теплоизоляционных материалов: X = 0,023...0,045 Вт/(м -°С).
Пенополистирол составляет более 50 % общего объема выпуска пенопластов. Пенополистирол марки ПСБ плотностью 15, 25, 35 и 50 кг/м3 производится для целей строительства беспрессовым способом. Бисерный полистирол, насыщенный при изготовлении легкокипящей жидкостью (изопентаном), обрабатывают паром; предвспененные гранулы выдерживают, а затем формуют изделия с окончательным вспучиванием и спеканием гранул. Пенополистирольные плиты применяют для утепления ограждающих конструкций жилых зданий.
Пенополиуретан производят непрерывным способом (на конвейере), способом заливки (в форму или конструкцию) или напыления. Особенность производства пенополиуретанов - способность смеси вспениваться и отверждаться при комнатной температуре без подогрева. Основой пенополиуретанов являются полиэфирные смолы, которые при смешивании с изоцианатами отверждаются с выделением С02. Для регулирования пористости вводят эмульгаторы, а скорости отверждения и вспенивания - катализаторы. Получаемые пенопласты характеризуются средней плотностью 35.. .350 кг/м3, водопоглощением 0,1.. .0,2 % и рабочей температурой применения (- 60 ...+150) °С.
На основе полиуретановых и фенольных пенопластов изготовляют трехслойных панели и плиты, наружные слои которых выполнены из асбестоцемента, алюминия или стеклопластика, а внутренний - из пенопласта. Применяют трехслойные панели для устройства навесных стен и кровли промышленных зданий и специальных сооружений. Такие панели характеризуются легкостью и простотой монтажа, высокими теплозащитными свойствами и малой массой. Напыляемый пенополиуретан применяют для теплоизоляции труб и оборудования, в качестве монтажной изоляции.
Арболит изготовляют из смеси цемента, органических заполнителей, химических добавок и воды. В качестве органических заполнителей используют дробленые отходы древесных пород, сечку камыша, костру конопли или льна и др. Технология изготовления изделий из арболита проста и включает операции по подготовке органических заполнителей (например, дробление отходов древесных пород), смешивание заполнителя с раствором химдобавок, а затем - с цементным тестом, укладку полученной смеси в формы и уплотнение, твердение отформованных изделий. В качестве химдобавок применяют хлористый кальций или жидкое стекло.
Арболит характеризуется невысокой плотностью - менее 700 кг/м3, прочность при сжатии колеблется от 0,5 до 3,5 МПа, теплопроводность - 0,1...0,22 Вт/(м °С). Он обладает рядом ценных строительных качеств: биостоек, трудносгораем, морозостоек, хорошо пилится и сверлится. Изделия из арболита в виде плит и панелей применяют для возведения навесных и самонесущих стен и перегородок, а также в перекрытиях и покрытиях малоэтажных зданий в сочетании с железобетоном.
Торфяные плиты получают прессованием торфяной гидромассы с отводом воды и последующей тепловой обработкой. Водостойкость плит низкая. Плотность торфяных плит -150...250 кг/м3. Размеры плиты следующие: длина - 1000 мм, ширина - 500 мм и толщина - 30 мм.
Камышитовые плиты производят путем прессования на станках стеблей камыша и прошивки их в поперечном направлении оцинкованной проволокой. Длина плиты-2000.. .3000 мм, ширина - 500... 1500 мм и толщина - 50... 100 мм. По плотности плиты выпускают трех марок: 175, 200 и 250, теплопроводность их - 0,06...0,09 Вт/(м °С), влажность по массе - не более 18%.
Из камышитовых плит устраивают каркасные стены и внутренние перегородки, они служат для утепления перекрытий жилых малоэтажных зданий и сельскохозяйственных построек.
54-55 вопрос: Акустические материалы. Звукопоглощающие материалы.
Совокупность многочисленных звуков, быстро меняющихся по частоте и силе, принято называть шумом. Шум в помещениях относится к категории санитарно-гигиенических вредностей, так как длительное его воздействие вредно для здоровья человека и понижает его работоспособность. Различают шумы воздушные и ударные. Воздушный шум возникает и распространяется в воздушной среде. Звуковые волны воздействуют на ограждающие конструкции зданий, приводят их в колебательное движение и тем самым передают звук в соседние помещения, отражаются и частично поглощаются ограждениями. Ударный шум возникает и передается в ограждающих конструкциях при ударных, вибрационных и других воздействиях непосредственно на конструкцию.
Вредное действие шумов стремятся уменьшить путем разработки рациональных планировочных и конструктивных решений зданий, осуществляемых с применением акустических материалов и изделий.
Акустическими называют материалы, способные поглощать звуковую энергию, а также снижать уровень силы и громкости проходящих через них звуков, возникщих как в воздухе, так и в материале ограждения. По назначению акустические материалы разделяют на звукоизоляционные и звукопоглощающие.
Звукоизоляционными называют материалы, применяемые в основном для ослабления ударного шума. Звукопоглощающие материалы обладают свойством преимущественно поглощать энергию падающих на них звуковых волн (воздушные шумы).
Звукоизоляционная способность материала в ограждении оценивается по разности уровней звука с обеих сторон ограждения и выражается в децибелах. Предельные (максимально допустимые) уровни шума устанавливаются в зависимости от назначения помещения и частотной характеристики звука. Нормальное ухо человека воспринимает звуковые колебания частотой 16... ...20 000 Гц, причем особо чувствительными являются частоты 1500...3000 Гц. Звукоизоляционная способность ограждения прямо пропорциональна десятичному логарифму его массы. Однако увеличение массы конструкций делает их слишком тяжелыми, громоздкими и дорогими. Гораздо эффективнее конструкции, изготовленные из пористых материалов, или многослойные конструкции, имеющие воздушные прослойки. В этом случае используются упругие свойства воздуха, который гасиг звуковые колебания и прерывает распространение звука. По этой же причине и звукопоглощающие материалы стремятся изготовлять высокопористыми (пористость 40... 90 %), т. е. как и теплоизоляционные материалы. Однако в отличие от теплоизоляционных материалов, где выгодны замкнутые воздушные поры, эффективность звукопоглощающих материалов возрастает при наличии сквозных пор или специально предусмотренной перфорации.
Акустические материалы должны сохранять свои свойства в процессе длительной эксплуатации и вместе С тем удовлетворять общим строительно-техническим требованиям по огнестойкости, био- и влагостойкости, механической прочности и экономичности.
Звукопоглощающие материалы снижают энергию падающих на них звуковых колебаний и поэтому служат для борьбы с воздушным шумом. При применении для акустической отделки внутри помещений они выполняют также декоративную роль (декоративно-акустические материалы).
Основной акустической характеристикой звукопоглощающих материалов является коэффициент звукопоглощения а, равный отношению количества энергии звуковых колебаний, поглощенной материалом или конструкцией, к общему количеству звуковой энергии, падающей на изолируемую поверхность в единицу времени
Все строительные материалы обладают в той или иной мере звукопоглощением. К звукопоглощающим материалам принято относить только те, которые имеют коэффициент звукопоглощения на средних частотах больше 0,2. Эти материалы характеризуются высокой, преимущественно открытой, пористостью. Для усиления поглощения звуковой энергии звукопоглощающие материалы часто дополнительно перфорируют. Перфорация облегчает доступ звуковых волн к материалу и в зависимости от размера и формы отверстий, их наклона и глубины, а также процента перфорации (отношение площади, занимаемой отверстиями, к общей площади изделия) увеличивает коэффициент звукопоглощения на 10...20 %' и более. Для этой же цели фактуру поверхности изделий делают трещиноватой, бороздчатой или рельефной (11.6) и окрашивают эмульсионными или клеевыми красками, образующими пористое покрытие.
Звукопоглощающие плиты целесообразно располагать в конструкции с воздушным зазором — «на относе». При этом используются упругие свойства воздуха, что также увеличивает звукопоглощение конструкции.
Звукопоглощающие материалы применяют в виде однослойного однородного пористого материала с офактуренной поверхностью, двух- и многослойных пористых материалов с жестким перфорированным покрытием, а также в виде штучных одно- и многослойных изделий разнообразных размеров и формы.
Однослойные пористые звкуопоглощающие материалы и изделия могут иметь волокнистую, конгломератную и ячеистую структуру. Из звукопоглощающих материалов с волокнистой структурой наибольшее значение имеют минераловатные и древесноволокнистые плиты.
Минераловатные плиты изготовляют из минерального, в том числе стеклянного или асбестового, волокна на синтетическом или битумном связующем. Эти плиты отличаются от теплоизоляционных более жестким скелетом, сквозной пористостью и внешней отделкой. Эффективными отделочными звукопоглощающими материалами на основе минеральных волокон являются плиты «акмигран» и «акминит». Для производства «акмиграна» применяют минеральную или стеклянную гранулированную вату и связующее, состоящее из крахмала, карбоксилцеллюлозы и бентонита. Из приготовленной смеси связующего и гранул ваты формуют плиты толщиной 20 мм, которые после сушки подвергают отделке (их калибруют, шлифуют и окрашивают). Лицевая поверхность плит имеет «трещиноватую» фактуру. Плиты «акминит» имеют несколько измененный состав (в частности, вместо бентонита используют каолин), а формуют их путем отливки в формах. Коэффициент звукопоглощения обоих видов плит в среднем и высоком диапазоне частот составляет 0,8...0,9. Плиты предназначены для акустической отделки потолков и верхней части стен общественных и административных зданий с относительной влажностью воздуха не более 75%.
Для звукопоглощающих облицовок используют пористые (мягкие) древесноволокнистые плиты с плотностью 200...300 кг/м3. Плиты перфорируют обычно на 2/з толщины круглыми отверстиями или пазами и окрашивают клеевой краской.
К материалам с конгломератной структурой относят акустические бетоны и растворы в виде плит, блоков, изготовляемые на пористых заполнителях (вспученные перлит и вермикулит, легкие виды керамзита, природной или шлаковой пемзы) и белом, цветном или обычном портландцементах.
Среди материалов с ячеистой структурой наибольшее распространение получили плиты и блоки из ячеистых бетонов, пеностекла и поропласты (ячеистые пластмассы, содержащие сообщающиеся между собой поры).
Звукопоглощающие изделия из пористых материалов с перфорированным покрытием представляют собой пористый материал плотностью не более 100...140 кг/м3. Изготовляют их в виде минераловатных плит, рулонов, акустических бетонных плит или полиуретанового поропласта. С внешней стороны пористый материал закрывают перфорированным экраном, который изготовляют из слоистого пластика, дюралюминия, оцинкованной листовой стали, асбестоцементных листов, гипсовых акустических плит и т.д. (11.7). Такие конструкции применяют для акустической отделки потолков и стен в общественных и культурно-бытовых зданиях.
Наибольший эффект звукопоглощения достигается при расположении звукопоглотителя в непосредственной близости от источника звука. В этом случае часть звуковой энергии гасится до того, как она проникает в помещение. Поэтому в общественных и особенно в промышленных зданиях большое практическое значение имеют штучные звукопоглотители в виде отдельных щитов, кубов, призм., конусов, шаров, подвешиваемых к потолкам шумных помещений или устанавливаемых на полу вблизи источника звука (станка, механизма и т.д.). Стенки штучных поглотителей имеют перфорацию, а полости между ними заполнены или облицованы изнутри пористыми материалами.
Высокого звукопоглощения при низких частотах достигают применением резонирующих панелей. Такие панели состоят из каркаса, на котором крепится мембрана из листов фанеры, жестких древесно-волокнистых плит или плотной ткани типа клеенки. Панели монтируют на потолке и стенах с определенным относом от ограждающей конструкции. Эффект звукопоглощения обусловливается активным сопротивлением системы, совершающей вынужденные колебания под действием падающей звуковой волны.
