- •Курс лекций по дисциплине
- •230103 «Автоматизированные системы обработки информации и управления» (по отраслям)
- •230106 «Техническое обслуживание средств вычислительной техники и компьютерных сетей»
- •Часть I
- •Аннотация
- •Содержание
- •Введение
- •Раздел 1. Элементы линейной алгебры
- •Лекция 1. Понятие матрицы. Операции над матрицами.
- •Понятие матрицы.
- •Виды квадратных матриц.
- •Равенство матриц.
- •Операции над матрицами.
- •Пример 1.1. Транспонируйте матрицу
- •4.2. Сложение (вычитание) матриц
- •4.3. Умножение матрицы на число
- •Пример 1.4. Найдите произведение матриц и .
- •Лекция 2. Определители. Свойства определителей.
- •Понятие определителя матрицы.
- •Свойства определителей.
- •Миноры и алгебраические дополнения элементов определителя.
- •Теорема о разложении определителя по элементам строки или столбца.
- •Расчет определителей в электронных таблицах Microsoft Excel.
- •Лекция 3. Обратная матрица. Ранг матрицы.
- •Понятие обратной матрицы.
- •Алгоритм нахождения обратной матрицы.
- •3. Понятие ранга матрицы.
- •Лекция 4. Системы линейных уравнений. Решение систем линейных уравнений по правилу крамера и методом гаусса.
- •Понятие решения системы линейных уравнений
- •Правило Крамера решения системы n линейных уравнений с n неизвестными.
- •Для нахождения числа решений системы n линейных уравнений с n неизвестными можно использовать следующую блок-схему:
- •Метод Гаусса решения систем линейных уравнений.
- •Чтобы найти любое частное решение системы, достаточно в качестве z взять любое действительное число.
- •Раздел 2. Элементы аналитической геометрии
- •Лекция 5. Векторы. Операции над векторами. Координаты вектора
- •1. Понятие вектора. Виды векторов.
- •2. Операции над векторами.
- •1). Сложение векторов
- •2). Вычитание векторов.
- •3). Умножение вектора на число.
- •3. Скалярное произведение векторов.
- •Координаты вектора на плоскости и в пространстве.
- •Введем понятие прямоугольной декартовой системы координат на плоскости и в пространстве. Прямоугольные координаты
- •Операции над векторами в координатах
- •Операции над векторами в координатах
- •Лекция 6. Прямая на плоскости
- •1. Уравнение линии
- •2. Способы задания прямой
- •2.1. Задание прямой с помощью точки и направляющего вектора.
- •2.2. Задание прямой через две точки.
- •2.3. Задание прямой, проходящей через точку с заданным нормальным вектором.
- •2.4. Задание прямой, проходящей через точку с заданным угловым коэффициентом.
- •3. Виды уравнения прямой.
- •3.1. Общее уравнение прямой.
- •3.2. Уравнение прямой с угловым коэффициентом k.
- •3.4. Параметрическое уравнение прямой.
- •4. Угол между двумя прямыми.
- •5. Расстояние от точки до прямой.
- •Лекция 7. Кривые второго порядка.
- •Понятие кривой второго порядка
- •Окружность и ее уравнение
- •Эллипс и его уравнение
- •4. Гипербола и ее уравнение
- •5. Парабола и её уравнение
- •Раздел 3. Основы математического анализа
- •Глава 3.1. Теория пределов
- •Лекция 8. Числовые последовательности
- •Понятие числовой последовательности
- •Монотонные последовательности
- •3. Ограниченные и неограниченные последовательности
- •4. Предел последовательности и его свойства
- •5. Бесконечно малые и бесконечно большие последовательности.
- •6. Признак сходимости монотонной последовательности. Число е.
- •Лекция 9. Предел функции
- •Понятие предела функции.
- •Односторонние пределы.
- •4. Техника вычисления пределов.
- •5. Предел функции на бесконечности
- •6. Замечательные пределы
- •Лекция 10. Непрерывность функции
- •Непрерывность функции в точке и на промежутке
- •Основные теоремы о непрерывных функциях.
- •Свойства функций, непрерывных на отрезке.
- •Непрерывность элементарных и сложных функций.
- •Точки разрыва, их классификация.
- •Глава 3.2. Дифференциальное исчисление функции одной действительной переменной
- •Лекция 11. Производная функции, нахождение производных различных функций
- •Понятие производной функции
- •Нахождение производных основных элементарных функций
- •Правила дифференцирования функций
- •4. Производная сложной функции.
- •Лекция 12. Геометрический смысл производной. Дифференциал функции
- •1. Геометрический смысл производной
- •2. Уравнение касательной к кривой.
- •3. Понятие дифференциала функции.
- •4. Геометрический смысл дифференциала
- •Лекция 13. Производные и дифференциалы высших порядков. Правило лопиталя
- •Понятие производной высших порядков
- •Понятие дифференциала высших порядков
- •Правило Лопиталя
- •Лекция 14. Возрастание и убывание, экстремумы функций
- •Признаки возрастания и убывания функции
- •Понятие точек экстремума и экстремумов функции
- •Необходимые условия существования экстремума
- •Достаточные условия существования экстремума
- •Лекция 15. Выпуклость графика функции. Точки перегиба
- •Понятие выпуклой и вогнутой функции
- •Критерий выпуклости-вогнутости функции и точек перегиба.
- •Лекция 16. Асимптоты графика функции
- •Понятие асимптот
- •Алгоритм поиска асимптот
- •Лекция 17. Общая схема исследования функции и построения графика
- •Глава 3. 3. Интегральное исчисление функции одной действительной переменной
- •Лекция 18. Неопределенный интеграл и его свойства.
- •Понятие неопределенного интеграла
- •Основные свойства неопределенного интеграла
- •Лекция 19. Основные методы интегрирования неопределённых интегралов
- •Непосредственное интегрирование
- •Интегралы от некоторых сложных функций
- •Интегрирование методом замены переменной (методом подстановки).
- •Метод интегрирования по частям
- •Лекция 20. Интегрирование рациональных и иррациональных функций. Универсальная подстановка
- •Интегрирование простейших рациональных дробей
- •Интегрирование некоторых иррациональных функций.
- •Универсальная тригонометрическая подстановка.
- •Лекция 21. Определенный интеграл
- •Понятие определенного интеграла.
- •Основные свойства определенного интеграла.
- •Формула Ньютона-Лейбница
- •Лекция 22. Методы вычисления определенного интеграла
- •Применение формулы Ньютона-Лейбница.
- •Интегрирование подстановкой (заменой переменной).
- •Интегрирование по частям.
- •Лекция 23. Приложения определенного интеграла в геометрии
- •Геометрический смысл определенного интеграла.
- •Приложение определенного интеграла к вычислению площадей плоских фигур.
- •3. Вычисление длины дуги плоской кривой и объема тел вращения.
- •Лекция 24. Несобственные интегралы
- •Понятие несобственного интеграла
- •2. Несобственные интегралы I рода.
- •Несобственные интегралы II рода.
- •Справочные материалы операции над векторами в координатах
- •Правила дифференцирования
- •Формулы дифференцирования Формулы дифференцирования
- •Критерий максимума-минимума функции
- •Свойства неопределенных интегралов
- •П риложения определенного интеграла
Чтобы найти любое частное решение системы, достаточно в качестве z взять любое действительное число.
Например, пусть z = 1, тогда тройка чисел (3; -3; 1) будет являться решением исходной системы.
Если z = 0, тогда тройка чисел (1; -2; 0) также будет являться решением исходной системы. И т.д.
Ответ: (2z + 1; -z – 2; z).
Пример 4.4. Докажите, что система линейных уравнений не имеет решений:
Решение. Составим расширенную матрицу системы и приведем ее к ступенчатому виду.
Домножим первую строку на (-3) и сложим ее со второй строкой:
Домножим первую строку на 2 и сложим ее с третьей строкой:
~
Сложим вторую и третью строки:
Видим, что ранг основной матрицы (2) не равен рангу расширенной матрицы (3). Следовательно, в силу критерия Кронеккера-Капелли, система не имеет решений.
Контрольные вопросы:
Что называют решением системы линейных уравнений?
Какая система линейных уравнений называется совместной? Несовместной?
В чем заключается правило Крамера решения системы линейных уравнений?
В чем заключается сущность метода Гаусса решения системы линейных уравнений?
Какой метод является более общим для решения систем линейных уравнений?
Сформулируйте критерий Кронеккера-Капелли совместности системы линейных уравнений.
Раздел 2. Элементы аналитической геометрии
Геометрия – одна из наиболее древних и ранее других систематизированная ветвь математики. Еще древнегреческие математики изучали различные кривые и подразделяли их на "плоские" (прямая, окружность), "телесные" (определяемые сечением тел - эллипс, парабола, гипербола) и линейные (кривые, определяемые кинематически). Но единых методов решения геометрических задач, связанных с данными кривыми, не существовало. Найти такие методы с целью применения их к изучению важных для практики линий различной формы и была призвана аналитическая геометрия. Аналитическая геометрия позволила применять к решению задач не только геометрические модели, тесно связанные с графическим изображением, но и модели аналитические, позволяющие задать любую линию или поверхность с помощью уравнения.
Главным в становлении аналитической геометрии послужило создание координатного метода. В нем ведущую роль играют вычисления, построения же имеют вспомогательное значение. Создание координатного метода было подготовлено трудами древнегреческих математиков, в особенности Аполлония (3–2 в. до н.э.), заложившего основы теории плоских сечений конуса. Он исследовал их методами алгебры, поэтому может считаться одним из предвестников аналитической геометрии.
Систематическое развитие координатный метод получил в первой половине XVII века в работах французских математиков Пьера Ферма (1601–1665) и Рене Декарта (1596–1650). В 1636 году Ферма написал статью "Введение в изучение плоских и телесных мест". Он выбирал косоугольную систему координат и в ней показывал, что кривая, задающаяся квадратным уравнением, есть коническое сечение - эллипс, парабола или гипербола. Но это произведение долго оставалось в рукописи и не нашло широкого распространения.
Опубликование в 1637 году "Геометрии" Декарта считается датой рождения аналитической геометрии благодаря использованию координатного метода. В "Геометрии" содержалось много нововведений. Именно Декарт стал обозначать неизвестные последними буквами латинского алфавита (x, y, z), а коэффициенты – первыми (a, b, c). Он также ввел привычную нам запись степеней: х2, х3. Но Декарт и Ферма рассматривали только плоские линии. К систематическому изучению пространственных линий и поверхностей координатный метод был впервые применен Леонардом Эйлером (1707–1783).
Что же касается понятия "вектора", то для математики оно относительно новое. К середине XIX века оно возникает одновременно в трудах нескольких ученых. Первое векторное исчисление на плоскости развил итальянский ученый Беллавитис (1835), в этом исчислении объектами служили отрезки. В это же время получили известность работы Аргана и Весселя о геометрической интерпретации комплексных чисел. Именно Арган обозначил направленный отрезок черточкой над буквой и ввел понятие "модуля" (от лат. modulus – мера).
Сам термин "вектор" (от лат. vector – несущий) впервые появился в 1845 году у ирландского математика и астронома Уильяма Гамильтона (1805–1865) в работах по построению числовых систем, обобщающих комплексные числа. В созданных Гамильтоном кватернионах необходимо было различать скалярную и векторную часть. Поэтому Гамильтону пришлось ввести такие термины, как "скаляр" (от лат. scale – шкала, лестница), "скалярное произведение". Общепринятые ныне векторы i, j, k также ввел Гамильтон в 1853 году. Почти одновременно с ним исследования в том же направлении, но с другой точки зрения вел немецкий математик Герман Грассман (1809-1877). Грассман ввел единичные векторы (е1, е2, е3) и представление вектора в виде: х1е1+х2е2+х3е3.
Англичанин Уильям Клиффорд (1845-1879) сумел объединить эти два подхода в рамках общей теории. А окончательный вид оно приняло в трудах американского физика и математика Джозайи Уилларда Гиббса (1839-1903), который в 1901 году опубликовал обширный учебник по векторному анализу.
Итак, аналитическая геометрия – раздел математики, в котором изучение геометрических объектов (векторов, прямых, плоскостей, кривых, поверхностей) проводится при помощи их аналитических моделей.
