- •Курс лекций по дисциплине
- •230103 «Автоматизированные системы обработки информации и управления» (по отраслям)
- •230106 «Техническое обслуживание средств вычислительной техники и компьютерных сетей»
- •Часть I
- •Аннотация
- •Содержание
- •Введение
- •Раздел 1. Элементы линейной алгебры
- •Лекция 1. Понятие матрицы. Операции над матрицами.
- •Понятие матрицы.
- •Виды квадратных матриц.
- •Равенство матриц.
- •Операции над матрицами.
- •Пример 1.1. Транспонируйте матрицу
- •4.2. Сложение (вычитание) матриц
- •4.3. Умножение матрицы на число
- •Пример 1.4. Найдите произведение матриц и .
- •Лекция 2. Определители. Свойства определителей.
- •Понятие определителя матрицы.
- •Свойства определителей.
- •Миноры и алгебраические дополнения элементов определителя.
- •Теорема о разложении определителя по элементам строки или столбца.
- •Расчет определителей в электронных таблицах Microsoft Excel.
- •Лекция 3. Обратная матрица. Ранг матрицы.
- •Понятие обратной матрицы.
- •Алгоритм нахождения обратной матрицы.
- •3. Понятие ранга матрицы.
- •Лекция 4. Системы линейных уравнений. Решение систем линейных уравнений по правилу крамера и методом гаусса.
- •Понятие решения системы линейных уравнений
- •Правило Крамера решения системы n линейных уравнений с n неизвестными.
- •Для нахождения числа решений системы n линейных уравнений с n неизвестными можно использовать следующую блок-схему:
- •Метод Гаусса решения систем линейных уравнений.
- •Чтобы найти любое частное решение системы, достаточно в качестве z взять любое действительное число.
- •Раздел 2. Элементы аналитической геометрии
- •Лекция 5. Векторы. Операции над векторами. Координаты вектора
- •1. Понятие вектора. Виды векторов.
- •2. Операции над векторами.
- •1). Сложение векторов
- •2). Вычитание векторов.
- •3). Умножение вектора на число.
- •3. Скалярное произведение векторов.
- •Координаты вектора на плоскости и в пространстве.
- •Введем понятие прямоугольной декартовой системы координат на плоскости и в пространстве. Прямоугольные координаты
- •Операции над векторами в координатах
- •Операции над векторами в координатах
- •Лекция 6. Прямая на плоскости
- •1. Уравнение линии
- •2. Способы задания прямой
- •2.1. Задание прямой с помощью точки и направляющего вектора.
- •2.2. Задание прямой через две точки.
- •2.3. Задание прямой, проходящей через точку с заданным нормальным вектором.
- •2.4. Задание прямой, проходящей через точку с заданным угловым коэффициентом.
- •3. Виды уравнения прямой.
- •3.1. Общее уравнение прямой.
- •3.2. Уравнение прямой с угловым коэффициентом k.
- •3.4. Параметрическое уравнение прямой.
- •4. Угол между двумя прямыми.
- •5. Расстояние от точки до прямой.
- •Лекция 7. Кривые второго порядка.
- •Понятие кривой второго порядка
- •Окружность и ее уравнение
- •Эллипс и его уравнение
- •4. Гипербола и ее уравнение
- •5. Парабола и её уравнение
- •Раздел 3. Основы математического анализа
- •Глава 3.1. Теория пределов
- •Лекция 8. Числовые последовательности
- •Понятие числовой последовательности
- •Монотонные последовательности
- •3. Ограниченные и неограниченные последовательности
- •4. Предел последовательности и его свойства
- •5. Бесконечно малые и бесконечно большие последовательности.
- •6. Признак сходимости монотонной последовательности. Число е.
- •Лекция 9. Предел функции
- •Понятие предела функции.
- •Односторонние пределы.
- •4. Техника вычисления пределов.
- •5. Предел функции на бесконечности
- •6. Замечательные пределы
- •Лекция 10. Непрерывность функции
- •Непрерывность функции в точке и на промежутке
- •Основные теоремы о непрерывных функциях.
- •Свойства функций, непрерывных на отрезке.
- •Непрерывность элементарных и сложных функций.
- •Точки разрыва, их классификация.
- •Глава 3.2. Дифференциальное исчисление функции одной действительной переменной
- •Лекция 11. Производная функции, нахождение производных различных функций
- •Понятие производной функции
- •Нахождение производных основных элементарных функций
- •Правила дифференцирования функций
- •4. Производная сложной функции.
- •Лекция 12. Геометрический смысл производной. Дифференциал функции
- •1. Геометрический смысл производной
- •2. Уравнение касательной к кривой.
- •3. Понятие дифференциала функции.
- •4. Геометрический смысл дифференциала
- •Лекция 13. Производные и дифференциалы высших порядков. Правило лопиталя
- •Понятие производной высших порядков
- •Понятие дифференциала высших порядков
- •Правило Лопиталя
- •Лекция 14. Возрастание и убывание, экстремумы функций
- •Признаки возрастания и убывания функции
- •Понятие точек экстремума и экстремумов функции
- •Необходимые условия существования экстремума
- •Достаточные условия существования экстремума
- •Лекция 15. Выпуклость графика функции. Точки перегиба
- •Понятие выпуклой и вогнутой функции
- •Критерий выпуклости-вогнутости функции и точек перегиба.
- •Лекция 16. Асимптоты графика функции
- •Понятие асимптот
- •Алгоритм поиска асимптот
- •Лекция 17. Общая схема исследования функции и построения графика
- •Глава 3. 3. Интегральное исчисление функции одной действительной переменной
- •Лекция 18. Неопределенный интеграл и его свойства.
- •Понятие неопределенного интеграла
- •Основные свойства неопределенного интеграла
- •Лекция 19. Основные методы интегрирования неопределённых интегралов
- •Непосредственное интегрирование
- •Интегралы от некоторых сложных функций
- •Интегрирование методом замены переменной (методом подстановки).
- •Метод интегрирования по частям
- •Лекция 20. Интегрирование рациональных и иррациональных функций. Универсальная подстановка
- •Интегрирование простейших рациональных дробей
- •Интегрирование некоторых иррациональных функций.
- •Универсальная тригонометрическая подстановка.
- •Лекция 21. Определенный интеграл
- •Понятие определенного интеграла.
- •Основные свойства определенного интеграла.
- •Формула Ньютона-Лейбница
- •Лекция 22. Методы вычисления определенного интеграла
- •Применение формулы Ньютона-Лейбница.
- •Интегрирование подстановкой (заменой переменной).
- •Интегрирование по частям.
- •Лекция 23. Приложения определенного интеграла в геометрии
- •Геометрический смысл определенного интеграла.
- •Приложение определенного интеграла к вычислению площадей плоских фигур.
- •3. Вычисление длины дуги плоской кривой и объема тел вращения.
- •Лекция 24. Несобственные интегралы
- •Понятие несобственного интеграла
- •2. Несобственные интегралы I рода.
- •Несобственные интегралы II рода.
- •Справочные материалы операции над векторами в координатах
- •Правила дифференцирования
- •Формулы дифференцирования Формулы дифференцирования
- •Критерий максимума-минимума функции
- •Свойства неопределенных интегралов
- •П риложения определенного интеграла
Глава 3. 3. Интегральное исчисление функции одной действительной переменной
Интегральное исчисление – один из важнейших разделов математического анализа, тесно связанный с дифференциальным исчислением. Интегральное исчисление возникло из потребностей создать общий метод нахождения площадей фигур и объемов тел.
Истоки интегрального исчисления следует искать в Древней Греции. Евдокс Книдский (ок. 408–355 до н.э.) создал метод исчерпывания, которым пользовался при вычислении площадей криволинейных фигур. Этот метод был усовершенствован Архимедом (ок. 287–212 до н.э.) и позволил ему найти объемы шара и эллипсоида, площадь сегмента параболы и т.д. Архимед предвосхитил многое идеи интегрального исчисления, но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исследования.
Математики XVII
столетия, получившие многие новые
результаты, учились на трудах Архимеда.
Немецкий математик и астроном Иоганн
Кеплер (1571–1630) правильно вычислил
ряд площадей (криволинейную трапецию
он представлял составленной из
бесконечного числа вертикальных отрезков
длиной f(x))
и объемов (тело разрезалось на бесконечно
тонкие пластинки). Эти исследования
продолжили итальянские математики
Бонавентура Кавальери (1598–1647)
и Эванджелиста Торричелли
(1608–1647). Французский математик Пьер
Ферма (1601–1665) уже в 1629 году умел
находить площадь под кривой
,
т.е. по существу вывел формулу
.
Кеплер при выводе своих знаменитых
законов движения планет фактически
опирался на идею приближенного
интегрирования.
Первым человеком, сумевшим обнаружить связь между вычислением площади под кривой и задачей о проведении касательной, был учитель Ньютона, английский математик Исаак Барроу (1630–1677). Однако при всей значимости результатов, полученных математиками XVII века, исчисления еще не было. Нужно было выделить общие идеи, лежащие в основе многих частных задач, установить связь интегрирования и дифференцирования. Это сделали Исаак Ньютон и Готфрид Лейбниц, открывшие независимо друг от друга формулу, известную нам как формула Ньютона-Лейбница. Тем самым окончательно сформировался общий метод. Предстояло еще научиться находить первообразные многих функций, дать логические основы нового исчисления. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.
Термин "интегральное исчисление" возник в результате переписки Лейбница и И.Бернулли. Вероятно, оно происходит от лат. integratio –"восстановление". Действительно, при интегрировании мы "восстанавливаем" функцию по известной производной. Существует и другая точка зрения. Integеr по-латыни – "целый", интегрирование - процесс объединения в целое малых элементов, из которых составлена фигура (при нахождении площади, объема).
Методы математического анализа активно развивались в XVIII веке. В первую очередь следует назвать Леонарда Эйлера (1707–1783), завершившего систематическое исследование интегрирования элементарных функций. Большое значение имели результаты русских ученых Пафнутия Львовича Чебышева (1828–1894), доказавшего, что существуют интегралы, не выразимые через элементарные функции, а также Михаила Васильевича Остроградского (1801–1862) и В.Я.Буняковского (1804-1889).
Строгое изложение теории интегралов появилось только в XIX веке. Решение этой задачи связано с именем Огюстена Коши (1789-1857). Теорию интегралов Коши обобщил крупнейший немецкий математик Бернхард Риман (1826–1866). Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены создателями теории меры (обобщение понятие площади и объема) Камилем Жорданом (1838–1922) и Анри Лебегом (1875–1941).
