
- •Курс лекций по дисциплине
- •230103 «Автоматизированные системы обработки информации и управления» (по отраслям)
- •230106 «Техническое обслуживание средств вычислительной техники и компьютерных сетей»
- •Часть I
- •Аннотация
- •Содержание
- •Введение
- •Раздел 1. Элементы линейной алгебры
- •Лекция 1. Понятие матрицы. Операции над матрицами.
- •Понятие матрицы.
- •Виды квадратных матриц.
- •Равенство матриц.
- •Операции над матрицами.
- •Пример 1.1. Транспонируйте матрицу
- •4.2. Сложение (вычитание) матриц
- •4.3. Умножение матрицы на число
- •Пример 1.4. Найдите произведение матриц и .
- •Лекция 2. Определители. Свойства определителей.
- •Понятие определителя матрицы.
- •Свойства определителей.
- •Миноры и алгебраические дополнения элементов определителя.
- •Теорема о разложении определителя по элементам строки или столбца.
- •Расчет определителей в электронных таблицах Microsoft Excel.
- •Лекция 3. Обратная матрица. Ранг матрицы.
- •Понятие обратной матрицы.
- •Алгоритм нахождения обратной матрицы.
- •3. Понятие ранга матрицы.
- •Лекция 4. Системы линейных уравнений. Решение систем линейных уравнений по правилу крамера и методом гаусса.
- •Понятие решения системы линейных уравнений
- •Правило Крамера решения системы n линейных уравнений с n неизвестными.
- •Для нахождения числа решений системы n линейных уравнений с n неизвестными можно использовать следующую блок-схему:
- •Метод Гаусса решения систем линейных уравнений.
- •Чтобы найти любое частное решение системы, достаточно в качестве z взять любое действительное число.
- •Раздел 2. Элементы аналитической геометрии
- •Лекция 5. Векторы. Операции над векторами. Координаты вектора
- •1. Понятие вектора. Виды векторов.
- •2. Операции над векторами.
- •1). Сложение векторов
- •2). Вычитание векторов.
- •3). Умножение вектора на число.
- •3. Скалярное произведение векторов.
- •Координаты вектора на плоскости и в пространстве.
- •Введем понятие прямоугольной декартовой системы координат на плоскости и в пространстве. Прямоугольные координаты
- •Операции над векторами в координатах
- •Операции над векторами в координатах
- •Лекция 6. Прямая на плоскости
- •1. Уравнение линии
- •2. Способы задания прямой
- •2.1. Задание прямой с помощью точки и направляющего вектора.
- •2.2. Задание прямой через две точки.
- •2.3. Задание прямой, проходящей через точку с заданным нормальным вектором.
- •2.4. Задание прямой, проходящей через точку с заданным угловым коэффициентом.
- •3. Виды уравнения прямой.
- •3.1. Общее уравнение прямой.
- •3.2. Уравнение прямой с угловым коэффициентом k.
- •3.4. Параметрическое уравнение прямой.
- •4. Угол между двумя прямыми.
- •5. Расстояние от точки до прямой.
- •Лекция 7. Кривые второго порядка.
- •Понятие кривой второго порядка
- •Окружность и ее уравнение
- •Эллипс и его уравнение
- •4. Гипербола и ее уравнение
- •5. Парабола и её уравнение
- •Раздел 3. Основы математического анализа
- •Глава 3.1. Теория пределов
- •Лекция 8. Числовые последовательности
- •Понятие числовой последовательности
- •Монотонные последовательности
- •3. Ограниченные и неограниченные последовательности
- •4. Предел последовательности и его свойства
- •5. Бесконечно малые и бесконечно большие последовательности.
- •6. Признак сходимости монотонной последовательности. Число е.
- •Лекция 9. Предел функции
- •Понятие предела функции.
- •Односторонние пределы.
- •4. Техника вычисления пределов.
- •5. Предел функции на бесконечности
- •6. Замечательные пределы
- •Лекция 10. Непрерывность функции
- •Непрерывность функции в точке и на промежутке
- •Основные теоремы о непрерывных функциях.
- •Свойства функций, непрерывных на отрезке.
- •Непрерывность элементарных и сложных функций.
- •Точки разрыва, их классификация.
- •Глава 3.2. Дифференциальное исчисление функции одной действительной переменной
- •Лекция 11. Производная функции, нахождение производных различных функций
- •Понятие производной функции
- •Нахождение производных основных элементарных функций
- •Правила дифференцирования функций
- •4. Производная сложной функции.
- •Лекция 12. Геометрический смысл производной. Дифференциал функции
- •1. Геометрический смысл производной
- •2. Уравнение касательной к кривой.
- •3. Понятие дифференциала функции.
- •4. Геометрический смысл дифференциала
- •Лекция 13. Производные и дифференциалы высших порядков. Правило лопиталя
- •Понятие производной высших порядков
- •Понятие дифференциала высших порядков
- •Правило Лопиталя
- •Лекция 14. Возрастание и убывание, экстремумы функций
- •Признаки возрастания и убывания функции
- •Понятие точек экстремума и экстремумов функции
- •Необходимые условия существования экстремума
- •Достаточные условия существования экстремума
- •Лекция 15. Выпуклость графика функции. Точки перегиба
- •Понятие выпуклой и вогнутой функции
- •Критерий выпуклости-вогнутости функции и точек перегиба.
- •Лекция 16. Асимптоты графика функции
- •Понятие асимптот
- •Алгоритм поиска асимптот
- •Лекция 17. Общая схема исследования функции и построения графика
- •Глава 3. 3. Интегральное исчисление функции одной действительной переменной
- •Лекция 18. Неопределенный интеграл и его свойства.
- •Понятие неопределенного интеграла
- •Основные свойства неопределенного интеграла
- •Лекция 19. Основные методы интегрирования неопределённых интегралов
- •Непосредственное интегрирование
- •Интегралы от некоторых сложных функций
- •Интегрирование методом замены переменной (методом подстановки).
- •Метод интегрирования по частям
- •Лекция 20. Интегрирование рациональных и иррациональных функций. Универсальная подстановка
- •Интегрирование простейших рациональных дробей
- •Интегрирование некоторых иррациональных функций.
- •Универсальная тригонометрическая подстановка.
- •Лекция 21. Определенный интеграл
- •Понятие определенного интеграла.
- •Основные свойства определенного интеграла.
- •Формула Ньютона-Лейбница
- •Лекция 22. Методы вычисления определенного интеграла
- •Применение формулы Ньютона-Лейбница.
- •Интегрирование подстановкой (заменой переменной).
- •Интегрирование по частям.
- •Лекция 23. Приложения определенного интеграла в геометрии
- •Геометрический смысл определенного интеграла.
- •Приложение определенного интеграла к вычислению площадей плоских фигур.
- •3. Вычисление длины дуги плоской кривой и объема тел вращения.
- •Лекция 24. Несобственные интегралы
- •Понятие несобственного интеграла
- •2. Несобственные интегралы I рода.
- •Несобственные интегралы II рода.
- •Справочные материалы операции над векторами в координатах
- •Правила дифференцирования
- •Формулы дифференцирования Формулы дифференцирования
- •Критерий максимума-минимума функции
- •Свойства неопределенных интегралов
- •П риложения определенного интеграла
Лекция 16. Асимптоты графика функции
План:
Понятие асимптот
Алгоритм поиска асимптот
Понятие асимптот
Одним из важных этапов построения графиков функций является поиск асимптот. С асимптотами мы встречались неоднократно: при построении графиков функций , y=tgx, y=сtgx. Мы определяли их как линии, к которым «стремится» график функции, но никогда их не пересечет. Пришло время дать точное определение асимптот.
Асимптоты бывают трех видов: вертикальная, горизонтальная и наклонная. На чертеже асимптоты принято обозначать пунктирными линиями.
Рассмотрим следующий искусственно составленный график функции (рис. 16.1), на примере которого хорошо видны все виды асимптот:
х=а – вертикальная асимптота
|
у=c – горизонтальная асимптота
|
у=kx+b – наклонная асимптота |
Дадим определение каждому виду асимптот:
Прямая х=а называется вертикальной асимптотой функции , если
.
Прямая у=с называется горизонтальной асимптотой функции , если
.
Прямая у=kx+b называется наклонной асимптотой функции , если
.
Геометрически определение наклонной асимптоты означает, что при →∞ график функции сколь угодно близко подходит к прямой у=kx+b, т.е. они практически совпадают. Разность практически одинаковых выражений стремится к нулю.
Отметим, что горизонтальные и наклонные асимптоты рассматриваются только при условии →∞. Иногда их различают на горизонтальные и наклонные асимптоты при →+∞ и →-∞.
Алгоритм поиска асимптот
Для поиска асимптот можно использовать следующий алгоритм:
Для поиска вертикальных асимптот находим точки, не принадлежащие области определения (х=а) и проверяем следующее условие: если , то х=а – вертикальная асимптота.
Вертикальных асимптот может быть одна, несколько или не быть совсем.
Для поиска горизонтальных асимптот находим .
Если с – число, то у=с – горизонтальная асимптота;
Если с – бесконечность, то горизонтальных асимптот нет.
Для поиска наклонных асимптот находим
.
Если k – число, отличное от 0, то находим
. Тогда у=kx+b – наклонная асимптота;
Если k – бесконечность, то наклонных асимптот нет.
Если функция представляет собой отношение двух многочленов, то при наличии у функции горизонтальных асимптот наклонные асимптоты искать не будем – их нет.
Рассмотрим примеры нахождения асимптот функции:
Пример 16.1.
Найдите асимптоты кривой
.
Решение. 1. Найдем область определения функции: х-1≠0; х≠1.
Проверим, является
ли прямая х=1 вертикальной асимптотой.
Для этого вычислим предел функции
в точке х=1:
.
Получили, что
,
следовательно, х=1 - вертикальная
асимптота.
2. Для поиска
горизонтальных асимптот находим
:
с=
.
Поскольку в пределе
фигурирует неопределенность
,
воспользуемся правилом Лопиталя: с=
=
.
Т.к. с=2 (число), то у=2 –
горизонтальная асимптота.
Т
ак
как функция представляет собой отношение
многочленов, то при наличии горизонтальных
асимптот утверждаем, что наклонных
асимптот нет.
Таким образом, данная функция имеет вертикальную асимптоту х=1 и горизонтальную асимптоту у=2. Для наглядности график данной функции представлен на рис. 16.2.
Пример 16.2.
Найдите асимптоты кривой
.
Решение. 1. Найдем область определения функции: х-2≠0; х≠2.
Проверим, является
ли прямая х=2 вертикальной асимптотой.
Для этого вычислим предел функции
в
точке х=2:
.
Получили, что
,
следовательно, х=2 - вертикальная
асимптота.
2. Для поиска
горизонтальных асимптот находим
:
с=
.
Поскольку в пределе
фигурирует неопределенность
,
воспользуемся правилом Лопиталя: с=
=
.
Т.к. с – бесконечность, то горизонтальных
асимптот нет.
3. Для поиска наклонных асимптот находим :
=
=
=
.
Получили
неопределенность вида
,
воспользуемся правилом Лопиталя:
=
=1.Итак,
1.
Найдем b по формуле:
.
b
=
=
=
=
=
.
Получили, что b= 2. Тогда у=kx+b – наклонная асимптота. В нашем случае она имеет вид: у=x+2.
Т
Рис. 16.3
Контрольные вопросы:
Что называют вертикальной, горизонтальной и наклонной асимптотой?
Сколько у функции может существовать вертикальных асимптот?
Может ли функция вообще не иметь асимптот?
Как обозначаются асимптоты на графике функции?
Какие из данных линий могут быть асимптотами: х=-4; у=-2x+6; у=x2+6; у=-3; х=
;
; х=0; у=- x. Определите их вид.