
- •Курс лекций по дисциплине
- •230103 «Автоматизированные системы обработки информации и управления» (по отраслям)
- •230106 «Техническое обслуживание средств вычислительной техники и компьютерных сетей»
- •Часть I
- •Аннотация
- •Содержание
- •Введение
- •Раздел 1. Элементы линейной алгебры
- •Лекция 1. Понятие матрицы. Операции над матрицами.
- •Понятие матрицы.
- •Виды квадратных матриц.
- •Равенство матриц.
- •Операции над матрицами.
- •Пример 1.1. Транспонируйте матрицу
- •4.2. Сложение (вычитание) матриц
- •4.3. Умножение матрицы на число
- •Пример 1.4. Найдите произведение матриц и .
- •Лекция 2. Определители. Свойства определителей.
- •Понятие определителя матрицы.
- •Свойства определителей.
- •Миноры и алгебраические дополнения элементов определителя.
- •Теорема о разложении определителя по элементам строки или столбца.
- •Расчет определителей в электронных таблицах Microsoft Excel.
- •Лекция 3. Обратная матрица. Ранг матрицы.
- •Понятие обратной матрицы.
- •Алгоритм нахождения обратной матрицы.
- •3. Понятие ранга матрицы.
- •Лекция 4. Системы линейных уравнений. Решение систем линейных уравнений по правилу крамера и методом гаусса.
- •Понятие решения системы линейных уравнений
- •Правило Крамера решения системы n линейных уравнений с n неизвестными.
- •Для нахождения числа решений системы n линейных уравнений с n неизвестными можно использовать следующую блок-схему:
- •Метод Гаусса решения систем линейных уравнений.
- •Чтобы найти любое частное решение системы, достаточно в качестве z взять любое действительное число.
- •Раздел 2. Элементы аналитической геометрии
- •Лекция 5. Векторы. Операции над векторами. Координаты вектора
- •1. Понятие вектора. Виды векторов.
- •2. Операции над векторами.
- •1). Сложение векторов
- •2). Вычитание векторов.
- •3). Умножение вектора на число.
- •3. Скалярное произведение векторов.
- •Координаты вектора на плоскости и в пространстве.
- •Введем понятие прямоугольной декартовой системы координат на плоскости и в пространстве. Прямоугольные координаты
- •Операции над векторами в координатах
- •Операции над векторами в координатах
- •Лекция 6. Прямая на плоскости
- •1. Уравнение линии
- •2. Способы задания прямой
- •2.1. Задание прямой с помощью точки и направляющего вектора.
- •2.2. Задание прямой через две точки.
- •2.3. Задание прямой, проходящей через точку с заданным нормальным вектором.
- •2.4. Задание прямой, проходящей через точку с заданным угловым коэффициентом.
- •3. Виды уравнения прямой.
- •3.1. Общее уравнение прямой.
- •3.2. Уравнение прямой с угловым коэффициентом k.
- •3.4. Параметрическое уравнение прямой.
- •4. Угол между двумя прямыми.
- •5. Расстояние от точки до прямой.
- •Лекция 7. Кривые второго порядка.
- •Понятие кривой второго порядка
- •Окружность и ее уравнение
- •Эллипс и его уравнение
- •4. Гипербола и ее уравнение
- •5. Парабола и её уравнение
- •Раздел 3. Основы математического анализа
- •Глава 3.1. Теория пределов
- •Лекция 8. Числовые последовательности
- •Понятие числовой последовательности
- •Монотонные последовательности
- •3. Ограниченные и неограниченные последовательности
- •4. Предел последовательности и его свойства
- •5. Бесконечно малые и бесконечно большие последовательности.
- •6. Признак сходимости монотонной последовательности. Число е.
- •Лекция 9. Предел функции
- •Понятие предела функции.
- •Односторонние пределы.
- •4. Техника вычисления пределов.
- •5. Предел функции на бесконечности
- •6. Замечательные пределы
- •Лекция 10. Непрерывность функции
- •Непрерывность функции в точке и на промежутке
- •Основные теоремы о непрерывных функциях.
- •Свойства функций, непрерывных на отрезке.
- •Непрерывность элементарных и сложных функций.
- •Точки разрыва, их классификация.
- •Глава 3.2. Дифференциальное исчисление функции одной действительной переменной
- •Лекция 11. Производная функции, нахождение производных различных функций
- •Понятие производной функции
- •Нахождение производных основных элементарных функций
- •Правила дифференцирования функций
- •4. Производная сложной функции.
- •Лекция 12. Геометрический смысл производной. Дифференциал функции
- •1. Геометрический смысл производной
- •2. Уравнение касательной к кривой.
- •3. Понятие дифференциала функции.
- •4. Геометрический смысл дифференциала
- •Лекция 13. Производные и дифференциалы высших порядков. Правило лопиталя
- •Понятие производной высших порядков
- •Понятие дифференциала высших порядков
- •Правило Лопиталя
- •Лекция 14. Возрастание и убывание, экстремумы функций
- •Признаки возрастания и убывания функции
- •Понятие точек экстремума и экстремумов функции
- •Необходимые условия существования экстремума
- •Достаточные условия существования экстремума
- •Лекция 15. Выпуклость графика функции. Точки перегиба
- •Понятие выпуклой и вогнутой функции
- •Критерий выпуклости-вогнутости функции и точек перегиба.
- •Лекция 16. Асимптоты графика функции
- •Понятие асимптот
- •Алгоритм поиска асимптот
- •Лекция 17. Общая схема исследования функции и построения графика
- •Глава 3. 3. Интегральное исчисление функции одной действительной переменной
- •Лекция 18. Неопределенный интеграл и его свойства.
- •Понятие неопределенного интеграла
- •Основные свойства неопределенного интеграла
- •Лекция 19. Основные методы интегрирования неопределённых интегралов
- •Непосредственное интегрирование
- •Интегралы от некоторых сложных функций
- •Интегрирование методом замены переменной (методом подстановки).
- •Метод интегрирования по частям
- •Лекция 20. Интегрирование рациональных и иррациональных функций. Универсальная подстановка
- •Интегрирование простейших рациональных дробей
- •Интегрирование некоторых иррациональных функций.
- •Универсальная тригонометрическая подстановка.
- •Лекция 21. Определенный интеграл
- •Понятие определенного интеграла.
- •Основные свойства определенного интеграла.
- •Формула Ньютона-Лейбница
- •Лекция 22. Методы вычисления определенного интеграла
- •Применение формулы Ньютона-Лейбница.
- •Интегрирование подстановкой (заменой переменной).
- •Интегрирование по частям.
- •Лекция 23. Приложения определенного интеграла в геометрии
- •Геометрический смысл определенного интеграла.
- •Приложение определенного интеграла к вычислению площадей плоских фигур.
- •3. Вычисление длины дуги плоской кривой и объема тел вращения.
- •Лекция 24. Несобственные интегралы
- •Понятие несобственного интеграла
- •2. Несобственные интегралы I рода.
- •Несобственные интегралы II рода.
- •Справочные материалы операции над векторами в координатах
- •Правила дифференцирования
- •Формулы дифференцирования Формулы дифференцирования
- •Критерий максимума-минимума функции
- •Свойства неопределенных интегралов
- •П риложения определенного интеграла
Глава 3.1. Теория пределов
Понятие предела – одно из основных понятий математического анализа, на котором базируются многие важные определения, в частности, определение производной. Истоки понятия предела следует искать в Древней Греции. Некоторым подобием предельного перехода был метод исчерпывания, изобретенный Евдоксом (ок. 408–355 до н.э.). В работах Архимеда (ок. 287–212 до н.э.) и Евклида (конец IV-III век до н.э.) этот метод дал поразительные результаты. В новое время идеи предела появляются у немецкого астронома и математика Иоганна Кеплера (1571–1630), итальянского математика Бонавентура Кавальери (1598-1647), английского математика Джона Валлиса (1616-1703).
Слово "лимит" (предел) произошло от латинского limes (limite) – "межа", "граница". Этим словом впервые воспользовался Исаак Ньютон. Однако исторически сложилось так, что точное определение такого ключевого понятия, как предел, и такого важного понятия, как непрерывность, вплоть до конца XVIII века отсутствовали. Соответственно, и многие математические рассуждения содержали пробелы, а иногда были даже ошибочны. Характерный пример – определение непрерывности. Эйлер, Лагранж и даже Фурье (а он работал уже в начале XIX века) называли непрерывной функцию, заданную на области определения одним аналитическим выражением.
Тем самым бурно развивающаяся "новая" математика XVII-XVIII века не отвечала стандартам строгости, привычным для ученых еще со времен древних греков. Интуиция, столь необходимая математикам, существенно опередила логику. Гениальная интуиция таких гигантов, как Ньютон, Лейбниц, Эйлер, помогала им избегать ошибок. Но необходимы были прочные логические основы.
Решительный шаг к созданию прочного фундамента анализа был сделан в 20-е годы XIX века французским математиком Огюстеном Коши (1789–1857), предложившим точное определение пределов функции и последовательности и на их основе доказавшим многие фундаментальные теоремы анализа, в частности теоремы о пределах. Несколько раньше (в 1821 году) определение предела, непрерывности и ряд других замечательных результатов получил чешский математик Бернард Больцано (1781-1848), но его работы стали известны много позднее. После лекций известного немецкого профессора Карла Вейерштрасса (1815-1897), которому принадлежит современное обозначение предела, определение предела по-Коши (на языке ε-δ) прочно вошло в обиход и используется нами по сей день.
Лекция 8. Числовые последовательности
План:
Понятие числовой последовательности
Монотонные последовательности
Ограниченные и неограниченные последовательности.
Предел последовательности. Свойства предела.
Бесконечно малые и бесконечно большие последовательности.
Признак сходимости монотонной последовательности. Число е.
Понятие числовой последовательности
Известные из школьного курса математики арифметическая и геометрическая прогрессии представляют собой примеры числовых последовательностей. Так, арифметическая прогрессия с первым членом а1=1 и разностью d=2 есть бесконечная числовая последовательность вида: 1; 3; 5; …; 1+2(n-1); …
Геометрическая
прогрессия, первый член которой а1=1
и знаменатель q=
т.е. прогрессия вида
- также бесконечная числовая
последовательность.
Задать числовую последовательность – значит задать правило, по которому каждому натуральному числу (номеру) соответствует одно и только одно действительное число аn (значение члена последовательности с номером n).
Бесконечной
числовой последовательностью
называется функция
,
заданная на множестве натуральных чисел
(п
N).
Число а1 называется первым членом последовательности, а2 – вторым, ..., аn – n-ым (общим). Индекс 1, 2, 3,…, n – номер элемента последовательности. Для обозначения числовой последовательности принята следующая запись: {аn}.
Чаще всего
последовательность задается с помощью
формулы для нахождения аn,
например, аn
=
.
Пример 8.1. Выпишите элементы последовательности аn = .
Решение: Пусть
n=1, тогда а1
=
=
.
Подставляя вместо n значения 2, 3, 4, 5, 6 и т.д. получим остальные элементы последовательности, образующие бесконечное числовое множество:
{
;
;
;
;
;
…}
Пример 8.2.
Выпишите элементы последовательности
3п-2.
Решение: Подставляя вместо n значения 1, 2, 3 и т.д., найдем следующие элементы последовательности: {1; 4; 7; 10; 13; 16…}.
Пример 8.3.
Выпишите элементы последовательности
.
Решение: Выбирая
в качестве n значения
1, 2, 3 и т.д., получим следующие элементы
последовательности: {-1;
;
;
;
;
…}.
Введенное понятие числовой последовательности имеет простую геометрическую интерпретацию. Отмечая на числовой оси значения а1; а2; а3;...аn…, получим множество точек, соответствующих данной последовательности.
В примере 8.1
последовательности
соответствует следующее геометрическое
изображение (рис. 8.1):
х
Рис. 8.1.
В примере 8.2 последовательности {3п-2} соответствует изображение на рис. 8.2:
Рис. 8.2.
7
100
130
В примере 8.3 элементы последовательности { } можно представить следующим образом (рис. 8.3):
0
-1
Рис. 8.3.