- •Курс лекций по дисциплине
- •230103 «Автоматизированные системы обработки информации и управления» (по отраслям)
- •230106 «Техническое обслуживание средств вычислительной техники и компьютерных сетей»
- •Часть I
- •Аннотация
- •Содержание
- •Введение
- •Раздел 1. Элементы линейной алгебры
- •Лекция 1. Понятие матрицы. Операции над матрицами.
- •Понятие матрицы.
- •Виды квадратных матриц.
- •Равенство матриц.
- •Операции над матрицами.
- •Пример 1.1. Транспонируйте матрицу
- •4.2. Сложение (вычитание) матриц
- •4.3. Умножение матрицы на число
- •Пример 1.4. Найдите произведение матриц и .
- •Лекция 2. Определители. Свойства определителей.
- •Понятие определителя матрицы.
- •Свойства определителей.
- •Миноры и алгебраические дополнения элементов определителя.
- •Теорема о разложении определителя по элементам строки или столбца.
- •Расчет определителей в электронных таблицах Microsoft Excel.
- •Лекция 3. Обратная матрица. Ранг матрицы.
- •Понятие обратной матрицы.
- •Алгоритм нахождения обратной матрицы.
- •3. Понятие ранга матрицы.
- •Лекция 4. Системы линейных уравнений. Решение систем линейных уравнений по правилу крамера и методом гаусса.
- •Понятие решения системы линейных уравнений
- •Правило Крамера решения системы n линейных уравнений с n неизвестными.
- •Для нахождения числа решений системы n линейных уравнений с n неизвестными можно использовать следующую блок-схему:
- •Метод Гаусса решения систем линейных уравнений.
- •Чтобы найти любое частное решение системы, достаточно в качестве z взять любое действительное число.
- •Раздел 2. Элементы аналитической геометрии
- •Лекция 5. Векторы. Операции над векторами. Координаты вектора
- •1. Понятие вектора. Виды векторов.
- •2. Операции над векторами.
- •1). Сложение векторов
- •2). Вычитание векторов.
- •3). Умножение вектора на число.
- •3. Скалярное произведение векторов.
- •Координаты вектора на плоскости и в пространстве.
- •Введем понятие прямоугольной декартовой системы координат на плоскости и в пространстве. Прямоугольные координаты
- •Операции над векторами в координатах
- •Операции над векторами в координатах
- •Лекция 6. Прямая на плоскости
- •1. Уравнение линии
- •2. Способы задания прямой
- •2.1. Задание прямой с помощью точки и направляющего вектора.
- •2.2. Задание прямой через две точки.
- •2.3. Задание прямой, проходящей через точку с заданным нормальным вектором.
- •2.4. Задание прямой, проходящей через точку с заданным угловым коэффициентом.
- •3. Виды уравнения прямой.
- •3.1. Общее уравнение прямой.
- •3.2. Уравнение прямой с угловым коэффициентом k.
- •3.4. Параметрическое уравнение прямой.
- •4. Угол между двумя прямыми.
- •5. Расстояние от точки до прямой.
- •Лекция 7. Кривые второго порядка.
- •Понятие кривой второго порядка
- •Окружность и ее уравнение
- •Эллипс и его уравнение
- •4. Гипербола и ее уравнение
- •5. Парабола и её уравнение
- •Раздел 3. Основы математического анализа
- •Глава 3.1. Теория пределов
- •Лекция 8. Числовые последовательности
- •Понятие числовой последовательности
- •Монотонные последовательности
- •3. Ограниченные и неограниченные последовательности
- •4. Предел последовательности и его свойства
- •5. Бесконечно малые и бесконечно большие последовательности.
- •6. Признак сходимости монотонной последовательности. Число е.
- •Лекция 9. Предел функции
- •Понятие предела функции.
- •Односторонние пределы.
- •4. Техника вычисления пределов.
- •5. Предел функции на бесконечности
- •6. Замечательные пределы
- •Лекция 10. Непрерывность функции
- •Непрерывность функции в точке и на промежутке
- •Основные теоремы о непрерывных функциях.
- •Свойства функций, непрерывных на отрезке.
- •Непрерывность элементарных и сложных функций.
- •Точки разрыва, их классификация.
- •Глава 3.2. Дифференциальное исчисление функции одной действительной переменной
- •Лекция 11. Производная функции, нахождение производных различных функций
- •Понятие производной функции
- •Нахождение производных основных элементарных функций
- •Правила дифференцирования функций
- •4. Производная сложной функции.
- •Лекция 12. Геометрический смысл производной. Дифференциал функции
- •1. Геометрический смысл производной
- •2. Уравнение касательной к кривой.
- •3. Понятие дифференциала функции.
- •4. Геометрический смысл дифференциала
- •Лекция 13. Производные и дифференциалы высших порядков. Правило лопиталя
- •Понятие производной высших порядков
- •Понятие дифференциала высших порядков
- •Правило Лопиталя
- •Лекция 14. Возрастание и убывание, экстремумы функций
- •Признаки возрастания и убывания функции
- •Понятие точек экстремума и экстремумов функции
- •Необходимые условия существования экстремума
- •Достаточные условия существования экстремума
- •Лекция 15. Выпуклость графика функции. Точки перегиба
- •Понятие выпуклой и вогнутой функции
- •Критерий выпуклости-вогнутости функции и точек перегиба.
- •Лекция 16. Асимптоты графика функции
- •Понятие асимптот
- •Алгоритм поиска асимптот
- •Лекция 17. Общая схема исследования функции и построения графика
- •Глава 3. 3. Интегральное исчисление функции одной действительной переменной
- •Лекция 18. Неопределенный интеграл и его свойства.
- •Понятие неопределенного интеграла
- •Основные свойства неопределенного интеграла
- •Лекция 19. Основные методы интегрирования неопределённых интегралов
- •Непосредственное интегрирование
- •Интегралы от некоторых сложных функций
- •Интегрирование методом замены переменной (методом подстановки).
- •Метод интегрирования по частям
- •Лекция 20. Интегрирование рациональных и иррациональных функций. Универсальная подстановка
- •Интегрирование простейших рациональных дробей
- •Интегрирование некоторых иррациональных функций.
- •Универсальная тригонометрическая подстановка.
- •Лекция 21. Определенный интеграл
- •Понятие определенного интеграла.
- •Основные свойства определенного интеграла.
- •Формула Ньютона-Лейбница
- •Лекция 22. Методы вычисления определенного интеграла
- •Применение формулы Ньютона-Лейбница.
- •Интегрирование подстановкой (заменой переменной).
- •Интегрирование по частям.
- •Лекция 23. Приложения определенного интеграла в геометрии
- •Геометрический смысл определенного интеграла.
- •Приложение определенного интеграла к вычислению площадей плоских фигур.
- •3. Вычисление длины дуги плоской кривой и объема тел вращения.
- •Лекция 24. Несобственные интегралы
- •Понятие несобственного интеграла
- •2. Несобственные интегралы I рода.
- •Несобственные интегралы II рода.
- •Справочные материалы операции над векторами в координатах
- •Правила дифференцирования
- •Формулы дифференцирования Формулы дифференцирования
- •Критерий максимума-минимума функции
- •Свойства неопределенных интегралов
- •П риложения определенного интеграла
Раздел 3. Основы математического анализа
Математическим анализом называют систему дисциплин, объединенных следующими характерными чертами. Предметом их изучения являются количественные соотношения окружающего мира (в отличие от геометрических дисциплин, занимающихся его пространственными свойствами). Эти соотношения выражаются при помощи чисел, как и в алгебре. Но в алгебре рассматриваются преимущественно постоянные величины (преобразование выражений, уравнения - они характеризуют состояние), а в математическом анализе – переменные величины, характеризующие процессы. В основе изучения зависимости между переменными величинами лежит понятие функции.
Зачатки методов математического анализа можно встретить еще у древнегреческих математиков. Так, Архимед (287–212 гг. до н.э.) при вычислении площадей некоторых фигур и при определении объема шара по существу использовал интегральное исчисление, хотя, естественно, не знал его общих методов. Систематическое развитие эти методы получили в XVII веке. Одним из основателей математического анализа стал английский ученый Исаак Ньютон (1643–1727). Исследования в области механики привели его к проблемам дифференциального и интегрального исчисления. Одновременно с Ньютоном проблемами анализа занимался и немецкий математик Готфрид Вильгельм Лейбниц (1646–1716). Оба этих великих ученых не только завершили создание дифференциального и интегрального исчисления (получившего название анализа бесконечно малых величин), но и заложили основы учения о рядах и дифференциальных уравнениях.
Грандиозные успехи естествознания и математики в последующие три столетия во многом были предопределены великим открытиям Ньютона и Лейбница. В XVIII веке большой вклад в развитие математического анализа внес швейцарский математик Леонард Эйлер (1707–1783), свыше 30 лет проработавший в России. Систематизацией уже имеющихся результатов, а также дальнейшим развитием теории занимались многие французские математики: Жан Даламбер (1717–1783), Жозеф Лагранж (1736–1818), Пьер Лаплас(1749–1827), А.Лежандр (1752–1833), Ж.Фурье (1768–1830). К концу XVIII века был накоплен огромный фактический материал, но он был недостаточно разработан в логическом отношении. Многие понятия ученые воспринимали интуитивно.
Очевидные противоречия привели к критическому пересмотру в XIX веке существующих методов и четкому логическому построению математического анализа. Только в XIX веке были даны строгие определения функции, непрерывности, были уточнены понятия предельного перехода и основанные на нем понятия производной и интеграла. Современное понятие функции сформировалось в первой половине XIX века благодаря исследованиям таких выдающихся математиков, как Николай Иванович Лобачевский (1792-1856), Петер Дирихле (1805–1859) и др. Производная была определена как предел отношения приращения функции к приращению аргумента (французский математик Огюстен Коши (1780–1856)), интеграл – как предельное значение интегральных сумм (немецкий математик Бернхард Риман (1826–1866)). До сих пор математическое образование основывается на этих подходах, хотя в ХХ веке они получили значительное развитие. Тогда же вошли в употребление термины математика "элементарная" (математика, предшествовавшая рождению математического анализа) и "высшая" (начинается с понятий производной, предела и интеграла).
Одним из важнейших завоеваний математического анализа в XIX веке стало рождение теории аналитических функций и функций комплексного переменного. Следует упомянуть немецкого математика Карла Гаусса (1777–1855), ставшего основателем теории функций комплексного переменного и определившего понятие предела, русских математиков Пафнутия Львовича Чебышева (1821–1866), создателя конструктивной теории функций, Софью Васильевну Ковалевскую (1850–1891), немецкого математика Давида Гильберта (1862–1943). Важнейшие труды, касающиеся стройного логического построения математического анализа, принадлежат немецким математикам Карлу Вейерштрассу (1815–1897), Юлиусу Дедекинду (1831–1916) и Георгу Кантору (1845–1918).
В ХХ веке, уже на новом уровне, происходит всё большее слияние геометрии и математического анализа. Областью приложения анализа становятся кривые и поверхности, расположенные в многомерных пространствах с дополнительной алгебраической структурой. Исследования в области математического анализа продолжаются и в наши дни.
