Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Stat_Kinemat_Dinam.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
7.74 Mб
Скачать

Завдання д-3. Теорема про зміну кінетичної енергії

Умова завдання. Механічна система складається із вантажів 1 і 2 (коефіцієнт тертя вантажів з площиною , циліндричного однорідного котка 3 та ступінчастих шківів 4 і 5 з радіусами ступіней , , , (масу кожного шківа вважати розподіленою по зовнішньому ободу) (рис.Д3.0– Д3.9, табл.Д3). Якщо маса тіла 2 m2 = 0 , груз 2 на рисунку не зображати; шківи 4 і 5 та вантаж 1 завжди входять в систему. Тіла зв'язані між собою нерозтяжними нитками, намотаними на шківи; ділянки ниток паралельні відповідним площинам. Коток 3 котиться без ковзання. Точка є центром мас котка 3.

Під дією сили F =f(s), що залежить від переміщення вантажу 1, система починає рухатись. В початковий момент часу система знаходилась в спокої. На шківи 4 та 5 діють постійні за величиною моменти опору, що дорівнюють відповідно та .

Визначити. В момент часу, коли переміщення точки прикладання сили дорівнює , визначити указані в стовпцях «Знайти» (табл.Д3) швидкості.

Табл.Д3.

№ умови

, кг

, кг

, кг

, кг

, кг

, Н·м

, Н·м

, Н

, м

Визна-чити

0

2

0

4

6

0

0

0,8

1,0

1

6

0

2

0

8

0,6

0

1,2

2

0

4

6

8

0

0

0,4

0,8

3

0

2

4

0

10

0,3

0

0,6

4

8

0

2

6

0

0

0,6

1,4

5

8

0

4

0

6

0,9

0

1,6

6

0

6

2

8

0

0

0,8

1,0

7

0

4

6

0

10

0,6

0

0,8

8

6

0

4

0

8

0,3

0

1,6

9

0

4

6

10

0

0

0,4

1,4

Теоретичне обґрунтування : [5] § 121 – 124 ; [6] Розд.III. Гл.4. § 5 – 7;

[8] § 58, 61, 65 – 69 ; [9]; [13]; [14]; [15]; [16].

Методичні вказівки. Завдання Д-3 на тему «Теорема про зміну кінетичної енергії механічної системи в інтегральній формі».

Для незмінних механічних систем (тобто ) теорема має вид:

, (Д3.1)

де Т - кінетична енергія системи в кінцевому положенні;

Т0 - кінетична енергія системи в початковому положенні;

- сума робіт зовнішніх сил, діючих на систему на заданому її переміщенні;

- сума робіт внутрішніх сил, діючих в системі на заданому її переміщенні.

Кінетична енергія системи дорівнює сумі кінетичних енергій тіл системи, тобто:

(Д3.2)

В залежності від того, який рух виконує тверде тіло, кінетична енергія визначається:

1) при поступальному русі , (Д3.3)

де m - маса тіла; V – швидкість тіла.

2) при обертальному русі тіла навколо нерухомої осі z

, (Д3.4)

де Iz - осьовий момент інерції тіла відносно осі z;

- кутова швидкість тіла.

3) при плоскому русі в площині Сxy

, (Д3.5)

де m – маса тіла; VC – швидкість центру мас тіла; ICz - осьовий момент інерції тіла відносно осі Сz; - кутова швидкість тіла.

Момент інерції однорідного котка: .

Момент інерції кільця радіуса R : .

Робота змінної сили F =f(s) :

, (Д3.6)

де - проекція сили на напрямок переміщення точки прикладення сили.

Робота постійної сили :

, (Д3.7)

де - кут між силою і напрямком переміщення точки прикладення сили.

Робота пари сил з моментом :

, (Д3.8)

де - кут повороту тіла. Знак „+” беремо, якщо момент М і кут однаково спрямовані, та „ – ”, якщо вони спрямовані протилежно.

Приклад Д-3

Механічна система (рис.Д3.а) складається з вантажу 1, ступінчастого шківа 2 з радіусами ступіней R2 і r2 (маса шківа рівномірно розподілена по зовнішньому ободу) та однорідного циліндричного котка 3. Коефіцієнт тертя між вантажем та площиною f. Тіла зв’язані між собою нерозтяжними нитками, намотаними на шків 2.

Під дією сили F =f(s), що залежить від переміщення вантажу 1, система починає рухатись із стану спокою. При русі на шків діє постійний момент сил опору М2.

Дано: m1 = 4 кг, m2 = 10 кг, m3 = 8 кг,

R2 = 0,2 м, r2 = 0,1 м, f = 0,2,

M = 0,6 Н м, F = 200(5+ 2s) H,

S1 =0,2 м.

Визначити: швидкість VC центра мас котка 3, коли переміщення вантажу 1 буде дорівнювати S1.

Розв’язування.

        1. Розглянемо рух незмінної механічної системи, що складається з тіл 1, 2, 3, з’єднаних між собою за допомогою ниток (рис.Д3.б). Зобразимо всі діючи на систему зовнішні сили: активні момент сил опору , реакції , сили тертя ковзання та тертя кочення .

Для визначення VC використаємо теорему про зміну кінетичної енергії

механічної системи

, (1)

2. Визначимо та .

Кінетична енергія системи дорівнює сумі кінетичних енергій окремих тіл системи. Якщо в початковий момент часу система знаходилась у стані спокою, маємо:

Для кінцевого положення системи, враховуючи, що тіло 1 виконує поступальний рух, тіло 2 – обертається навколо нерухомої осі, а тіло 3 – рухається в площині, маємо:

(2)

Момент інерції ступінчастого шківа, маса якого розподілена по його зовнішньому ободу, дорівнює:

(3)

Момент інерції однорідного котка 3, визначається за формулою:

(4)

Виразимо всі швидкості через невідому швидкість центра мас котка 3 :

, , (5) Підставимо формули (3) – (5) у вираз (2) і отримаємо

(6)

  1. Тепер знайдемо суму робіт всіх діючих зовнішніх сил при переміщенні, яке буде мати система, коли вантаж 1 пройде шлях S1.

Робота сили дорівнює:

Роботи сили ваги та реакції дорівнюють нулю, бо кут між цими силами та переміщенням S1 складає 900.

Між силою тертя ковзання та переміщенням S1 кут 1800, тому A( ) = ,

де , бо вантаж знаходиться на горизонтальній площині.

Момент М спрямований протилежно напрямку , тому його робота дорівнює

A(M) M

Роботи сили ваги та реакції дорівнюють нулю, бо точка прикладання цих сил нерухома.

Робота сили ваги (кут між нею та переміщенням центра ваги катка дорівнює 1500 ):

.

Точка прикладання сил та є миттєвим центром швидкостей, тому робота цих сил дорівнює нулю.

Таким чином, сума робіт діючих зовнішніх сил, що діють на систему на заданому її переміщенні:

(7)

Виразимо всі переміщення через переміщення вантажу 1 S1:

; (8)

Підставимо (6) та (7) з врахуванням (8) в вираз теореми (1) та отримаємо:

(9)

Підставимо чисельні значення та знайдемо швидкість центру ваги котка 3

Відповідь:

Завдання Д-4. Загальне рівняння динаміки

Умова завдання. Механічна система складається з однорідних ступінчастих шківів 1 і 2, обмотаних нерозтяжними нитками, вантажів 3 – 6, прикріплених до цих ниток, та невагомого блока (рис. Д4.0 – Д4.9, табл. Д4). Система рухається у вертикальній площині під дією сил ваги та пари сил з моментом , прикладеної до одного з шківів. Радіуси ступенів шківа 1 дорівнюють: , а шківа 2 – ; радіуси інерції відносно осей обертання дорівнюють відповідно та . Вага тіл задана в табл. Д4. Вантажі, вага яких дорівнює нулю, на рисунку не зображати, шківи 1 і 2 зображати завжди.

Визначити. Прискорення вантажу, що має найбільшу вагу, нехтуючи тертям.

Табл. Д4

№ умови

,

,

,

,

,

0

1

2

3

4

5

6

7

8

9

10

0

20

0

30

0

40

10

0

30

0

40

30

20

0

10

0

20

40

0

20

0

40

10

20

30

0

0

10

40

30

10

0

30

0

40

20

40

0

20

40

20

10

0

40

20

30

0

30

10

0

30

0

40

10

0

10

30

20

0

10

12

16

18

12

16

10

18

12

16

Теоретичне обґрунтування : [5] § 137 – 141; [6] Розд.III. Гл.6. § 1 – 3 , 8;

[8] § 112, 117, 118 ; [9]; [13]; [15]; [17] .

Методичні вказівки. Завдання Д-4 на тему «Загальне рівняння динаміки». Для систем з геометричними, стаціонарними ідеальними в’язями означене рівняння має вигляд:

, (Д4.1)

де сума можливих робіт активних сил, що діють на систему; сума можливих робіт сил інерції.

(У наведених вище сумах під можливою роботою розуміється робота сил на якомусь можливому переміщенні системи).

Сили інерції точок, з яких складаються тверді тіла, можна звести до головного вектора та головного моменту сил інерції відносно вибраного центру зведення (в динаміці за центр зведення беруть точку - центр мас тіла). Для тіл, що виконують поступальний, обертальний або плоский рухи головний вектор і головний момент сил інерції визначаються за правилами.

Для тіла, що виконує поступальний рух:

- головний вектор , головний момент , (Д4.2)

де маса тіла, прискорення центру мас тіла.

Головний вектор сил інерції та прискорення центру мас спрямовані протилежно.

Для тіла, що виконує обертальний рух навколо нерухомої центральної осі:

- головний вектор , головний момент , (Д4.3)

де осьовий момент інерції, кутове прискорення тіла.

Головний момент сил інерції та кутове прискорення спрямовані протилежно.

Для тіла, що виконує плоский рух:

- головний вектор , головний момент , (Д4.4)

Головний вектор і головний момент сил інерції спрямовані протилежно відповідним прискоренням.

Приклад Д-4

Механічна система (рис. Д4.а) складається із з’єднаних нерозтяжними нитками блока 1 радіуса і ступінчастого шківа 2 (радіуси ступіней і , радіус інерції відносно осі обертання ), а також вантажів 3 і 4, прикріплених до цих ниток. Система рухається у вертикальній площині під дією сил ваги та пари сил з моментом , прикладеної до блока 1.

Дано:

Визначити: прискорення вантажу 3, нехтуючи тертям.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]