- •1.Основні складові системного програмного забезпечення.
- •2.Охарактеризуйте узагальнену структуру програмного забезпечення обчислювальних систем.
- •3.Типова структура системного програмного забезпечення.
- •4.Основні функції операційної системи.
- •5.Охарактеризуйте основні типи операційних систем.
- •1. За призначенням.
- •4. За способом побудови
- •6.Основні концепції побудови операційних систем.
- •7.Класифікація ос, за призначенням.
- •8.Класифікація ос, за режимом обробки задач.
- •9.Класифікація ос, за способами побудови.
- •10.Охарактеризуйте підсистему керування ресурсами
- •11.Охарактеризуйте підсистему керування введенням-виведенням.
- •12. Охарактеризуйте підсистему керування файлами та файлові системи.
- •17. Багаторівневі операційні системи
- •18. Операційні системи з мікроядром
- •19.Концепція віртуальних машин в побудові операційних систем
- •20.Засоби апаратної підтримки операційних систем
- •21.Інтерфейс прикладного програмування
- •22.Варіанти реалізації інтерфейсу прикладного програмування
- •23.Особливості базової архітектури ос unix.
- •24.Призначення ядра ос Linux та його особливості.
- •25.Концепція модулів ядра в ос Linux.
- •26.Основні компоненти архітектури ос Windows.
- •27. Призначення рівня абстрагування від апаратури в ос Windows.
- •28. Основні компоненти підсистеми виконання в ос Windows.
- •29.Об’єктна модель архітектури ос Windows.
- •30. Розкрийте поняття „обчислювальний процес”.
- •31. Основні стани обчислювального процесу.
- •32. Умови переходу обчислювального процесу із стану в стан.
- •33. Призначення та основні функції блоку керування процесами (pcb).
- •34. Потоки („нитки”), призначення та застосування.
- •35. Поняття „переривання” та їх призначення.
- •36. Основні групи „переривань” та події, що їх викликають.
- •37.Обробка „переривань” та механізм перемикання контексту „переривань”.
- •38.Механізми, що використовуються для планування процесорів.
- •39.Інтервальний таймер, призначення та застосування у плануванні процесорів.
- •40.Пріоритети, призначення та застосування у плануванні процесорів.
- •41.Планування процесорів за принципом fifo.
- •42.Циклічне планування завантаження процесорів.
- •43.Планування завантаження процесорів за принципом „найкоротше завдання-перший”.
- •44.Планування завантаження процесорів за „найменшим часом, що залишився”.
- •45.Планування процесорів із використанням багаторівневих черг зі зворотними зв’язками.
- •46. Витісняючі та невитісняючі алгоритми планування процесів.
- •47. Рівні планування процесів.
- •48. Задачі, що вирішуються на кожному з рівнів планування процесів.
- •49. Основні вимоги до планування процесів.
- •50.Планування процесів з переключенням та без переключення.
- •51.Особливості процесів в ос unix.
- •52.Недоліки традиційної багатопотоковості в Linux.
- •54.Особливості планування потоків у ос Windows.
- •55.Створення потоків у ос Windows
- •56.Особливості планування потоків у ос Windows.
- •57.Планування потоків у ос Windows: пріоритети.
- •58.Планування потоків у ос Windows: вибір кванту часу.
- •59.Планування потоків у ос Windows: динамічна зміна пріоритету та кванту часу.
38.Механізми, що використовуються для планування процесорів.
Механізми, що використовуються для планування процесорів:
1) Інтервальний таймер
2) Пріоритети
3) Планування за терміном завершення
4) Планування за принципом FIFO
5) Циклічне планування (RR)
6) Планування за принципом SIF (“найкоротше завдання - перший”)
7) Принцип SRT (“за найменшим часом, що залишається”)
8) Принцип HRN (“за найбільшим відносним часом відповіді”)
9) Багаторівневі черги зі зворотними зв’язками
39.Інтервальний таймер, призначення та застосування у плануванні процесорів.
ОС встановлює годинник або інтервальний таймер, який генерує сигнал переривання в деякий конкретний момент часу в майбутньому. Після переривання ЦП передається наступному процесу. Який, зберігає за собою керування ЦП, доки не закінчиться або не перерветься.
Таймер гарантує можливий час відповіді для користувачів в діалоговому режимі, не допускає „зависання” системи з причини за-циклювання. А також дозволяє процесам відповідним чином реагувати на події, що залежать від часу.
40.Пріоритети, призначення та застосування у плануванні процесорів.
Статичні пріоритети. Призначаються один раз. Для їх реалізації необхідні незначні витрати, але вони не реагують на зміни в середовищі, які можуть вимагати корекції пріоритетів.
Динамічні пріоритети. Реагують на зміни в ситуації. Вимагають більших витрат. Але система стає більш реактивною, краще використовує ресурси.
Пріоритети, що купуються. Система повинна надавати привілейоване обслуговування для тих ситуацій, коли якому-небудь користувачеві це потрібно. Користувач, якому необхідно терміново виконати своє завдання, може піти на додаткові витрати (платню) за більш високий рівень обслуговування. Якби не бралась більш висока платня за привілеї, то всі користувачі хотіли б більш високий рівень обслуговування.
41.Планування процесорів за принципом fifo.
Це дисципліна планування без переключення, при якій процесам надається ЦП у відповідності з часом їх надходження у список готових до виконання.
Таке планування найчастіше застосовується в системах пакетної обробки, але воно не дозволяє гарантувати можливий (допустимий) час відповіді для інтерактивних користувачів.
42.Циклічне планування завантаження процесорів.
Циклічне, або кругове (round robin, RR). Диспетчеризація виконується за принципом FIFO, але кожний раз процесу надається обмежена кількість часу ЦП, що називається квантом. Процес, у якого був перехоплений ЦП, переходить в кінець списку готових до виконання процесів. Така дисципліна (RR) ефективна для роботи з розподілом часу, коли система повинна гарантувати можливий час відповіді для всіх інтерактивних користувачів.
Визначення оптимального розміру кванту – складна задача. Як правило, його вибирають настільки великим, що більшість тривіальних пересічних запитів можна було б повністю обслужити в рамках одного кванту.
43.Планування завантаження процесорів за принципом „найкоротше завдання-перший”.
Планування за принципом SIF (“найкоротше завдання - перший”)
Планування без переключень застосовується перш за все для планування пакетних завдань. Воно забезпечує мінімальний середній час очікування для завдань, але для тривалих завдань час очікування може виявитись великим. Надається перевага коротким завданням за рахунок більш тривалих. Чергове завдання вибирається таким чином, щоб воно завершувало свою роботу та виходило з системи як можна швидше. В результаті ця дисципліна дозволяє звести до мінімуму середній час очікування для завдань, що проходять через систему.
Проблема: треба точно знати, скільки часу вимагає завдання або процес.
Можна “консервувати” процеси. Не застосовується в системах розподілу часу, де необхідно гарантувати можливий час відповіді.
