
- •Содержание
- •Введение § 1. Предмет и задачи токсикологической химии, ее связь с другими дисциплинами
- •§ 2. Краткий исторический очерк возникновения и развития отечественной токсикологической химии
- •Глава I. Общие вопросы химико-токсикологического анализа
- •§ 1. Объекты химико-токсикологического анализа. Вещественные доказательсва
- •§ 2. Особенности химико-токсикологического анализа
- •§ 3. Осмотр объектов исследования и определение некоторых их свойств
- •§ 4. Предварительные пробы в химико-токсикологическом анализе
- •§ 5. План химико-токсикологического анализа
- •§ 6. Организация органов судебно-медицинской и судебно-химической экспертизы в ссср
- •§ 7. Эксперт-химик
- •§ 8. Правила судебно-химической экспертизы вещественных доказательств
- •§ 9. Акт судебно-химической экспертизы вещественных доказательств
- •§ 10. Некоторые вопросы терминологии в токсикологической химии
- •§ 11. Классификация ядовитых и сильнодействующих веществ в токсикологической химии
- •Глава II. Отравления и некоторые вопросы токсикокинетики ядов
- •§ 1. Отравления и их классификация
- •§ 2. Пути поступления ядов в организм
- •§ 3. Всасывание ядов в организме
- •§ 4. Распределение ядов в организме
- •§ 5. Связывание ядов в организме
- •§ 6. Выделение ядов из организма
- •§ 7. Факторы, влияющие на токсичность химических соединений
- •§ 8. Методы детоксикации
- •§ 9. Метаболизм чужеродных соединений
- •§ 10. Окисление чужеродных соединений
- •§ 11. Восстановление чужеродных соединений
- •§ 12. Гидролиз чужеродных соединений
- •§ 13. Дезалкилирование, дезаминирование и десульфирование чужеродных соединений
- •§ 14. Другие метаболические превращения
- •§ 15. Реакции конъюгации
- •§ 16. Посмертные изменения лекарственных веществ и ядов в трупах
- •§ 17. Разложение биологического материала после наступления смерти
- •§ 18. Изменение ядов при разложении трупов
- •Глава III. Методы анализа, применяемые в токсикологической химии
- •§ 1. Метод экстракции
- •§ 2. Микрокристаллоскопический анализ
- •§ 3. Метод микродиффузии
- •Глава IV. Ядовитые и сильнодействующие вещества, изолируемые из биологического материала перегонкой с водяным паром
- •§ 1. Аппараты для перегонки с водяным паром
- •§2. Влияние рН среды на перегонку химических соединений с водяным паром
- •§ 3. Перегонка ядовитых веществ с водяным паром из подкисленного биологического материала
- •§ 4. Перегонка ядовитых веществ с водяным паром из подкисленного, а затем из подщелоченного биологического материала
- •§ 5. Фракционная перегонка веществ, содержащихся в дистиллятах
- •§ 6. Синильная кислота
- •§ 7. Формальдегид
- •§ 8. Метиловый спирт
- •§ 9. Этиловый спирт
- •§ 10. Изоамиловый спирт
- •§ 11. Ацетон
- •§ 12. Фенол
- •§ 13. Крезолы
- •§ 14. Хлороформ
- •§ 15. Хлоралгидрат
- •§ 16. Четыреххлористый углерод
- •§ 17. Дихлорэтан
- •§ 18. Реакции, позволяющие отличить хлорпроизводные друг от друга
- •§ 19. Тетраэтилсвинец
- •§ 20. Уксусная кислота
- •§ 21. Этиленгликоль
- •Глава V. Ядовитые и сильнодействующие вещества, изолируемые из биологического материала подкисленным этиловым спиртом или подкисленной водой
- •§ 1. Развитие методов выделения алкалоидов и других азотистых оснований из биологического материала
- •§ 2. Влияние рН среды на изолирование алкалоидов и других азотистых оснований из биологического материала
- •§ 3. Влияние состава извлекающих жидкостей на изолирование алкалоидов и других азотистых основании из биологического материала
- •§ 4. Влияние подкисленной воды и подкисленного спирта на извлечение примесей, переходящих в вытяжки из биологического материала
- •§ 5. Очистка вытяжек из биологического материала от примесей
- •§ 6. Экстракция алкалоидов и других токсических веществ из вытяжек
- •§ 7. Обнаружение ядовитых веществ, изолируемых подкисленной водой или подкисленным этиловым спиртом
- •§ 8. Количественное определение токсических веществ, изолированных подкисленной водой или подкисленным спиртом
- •§ 9. Метод выделения токсических веществ, основанный на изолировании их этиловым спиртом подкисленным щавелевой кислотой
- •§ 10. Метод выделения токсических веществ, основанный на изолировании их водой, подкисленной щавелевой кислотой
- •§ 11. Метод выделения токсических веществ, основанный на изолировании их водой, подкисленной серной кислотой
- •§ 12. Барбитураты и методы их исследования
- •§ 13. Барбамил
- •§ 14. Барбитал
- •§ 15. Фенобарбитал
- •§ 16. Бутобарбитал
- •§ 17. Этаминал-натрий
- •8. Обнаружение этаминала-натрия по уф- и ик-спектрам.
- •§ 18. Бензонал
- •§ 19. Гексенал
- •§ 20. Производные ксантина
- •§ 21. Кофеин
- •§ 22. Теобромин
- •§ 23. Теофиллин
- •§ 24. Наркотин
- •§ 25. Меконовая кислота
- •§ 26. Меконин
- •§ 27. Ноксирон
- •§ 28. Салициловая кислота
- •§ 29. Антипирин
- •§ 30. Амидопирин
- •§ 31. Фенацетин
- •§ 32. Хинин
- •§ 33. Опий и омнопон
- •§ 34. Морфин
- •§ 35. Кодеин
- •§ 36. Папаверин
- •§ 37. Галантамин
- •§ 38. Анабазин
- •§ 39. Никотин
- •§ 40. Ареколин
- •§ 41. Кониин
- •§ 42. Атропин
- •§ 43. Скополамин
- •§ 44. Кокаин
- •§ 45. Стрихнин
- •§ 46. Бруцин
- •§ 47. Резерпин
- •§ 48. Пахикарпин
- •§ 49. Секуренин
- •§ 50. Эфедрин
- •§ 51. Аконитин
- •§ 52. Новокаин
- •§ 53. Дикаин
- •§ 54. Аминазин
- •§ 55. Дипразин
- •§ 56. Тизерцин
- •§ 57. Хлордиазепоксид
- •§ 58. Диазепам
- •§ 59. Нитразепам
- •§ 60. Оксазепам
- •§ 61. Апоморфин
- •§ 62. Дионин
- •§ 63. Промедол
- •Глава VI. Вещества, изолируемые из объектов минерализацией биологического материала
- •§ 1. Связывание «металлических ядов» биологическим материалом
- •§ 2. Методы минерализации органических веществ
- •§ 3. Сухое озоление и сплавление органических веществ
- •§ 4. Окислители, применяемые для минерализации органических веществ
- •§ 5. Отбор и подготовка проб биологического материала для минерализации
- •§ 6. Разрушение биологического материала азотной и серной кислотами
- •§ 7. Разрушение биологического материала хлорной, азотной и серной кислотами
- •§ 8. Разрушение биологического материала пергидролем и серной кислотой
- •§ 9. Дробный метод и систематический ход анализа «металлических ядов»
- •§ 10. Маскировка ионов в дробном анализе
- •§ 11. Реактивы, применяемые в дробном анализе «металлических ядов» для маскировки ионов
- •§ 12. Реакции, применяемые в химико-токсикологическом анализе для обнаружения ионов металлов
- •§ 13. Соединения бария
- •§ 14. Соединения свинца
- •§ 15. Соединения висмута
- •§ 16. Соединения кадмия
- •§ 17. Соединения марганца
- •§ 18. Соединения меди
- •§ 19. Соединения мышьяка
- •§ 20. Соединения серебра
- •§ 21. Соединения сурьмы
- •§ 22. Соединения таллия
- •§ 23. Соединения хрома
- •§ 24, Соединения цинка
- •§ 25. Соединения ртути
- •§ 26. Количественное определение «металлических ядов» в минерализатах
- •§ 27. Количественное определение ртути
- •§ 28. Экстракционно-фотоколориметрическое определение меди
- •Глава VII. Вещества, изолируемые из биологического материала настаиванием исследуемых объектов с водой
- •Минеральные кислоты и щелочи
- •§ 1. Серная кислота
- •§ 2. Азотная кислота
- •§ 3. Соляная кислота
- •§ 4. Гидроксид калия
- •§ 5. Гидроксид натрия
- •§ 6. Аммиак
- •§ 7. Нитриты
- •Глава VIII. Ядохимикаты и методы их химико-токсикологического анализа
- •§ 1. Классификация ядохимикатов
- •§ 2. Гексахлорциклогексан (гхцг)
- •§ 3. Гептахлор
- •§ 4. Фосфорсодержащие органические соединения и методы их анализа
- •§ 5. Хлорофос
- •§ 6. Карбофос
- •§ 7. Метафос
- •§ 8. Карбарил
- •§ 9. Гранозан
- •Глава IX. Вещества, определяемые непосредственно в биологическом материале
- •§ 1. Оксид углерода (II)
- •§ 2. Спектроскопический метод обнаружения оксида углерода (II) в крови
- •§ 3. Химические методы обнаружения оксида углерода (II) в крови
- •§ 4. Количественное определение оксида углерода (II) в крови
- •Приложение 1. Приготовление реактивов
- •Приложение 2. Приготовление хроматографических пластинок
- •Список рекомендуемой литературы
§ 8. Метиловый спирт
Метиловый спирт (метанол) — бесцветная жидкость (т. кип. 64,5 °С, плотность 0,79), смешивающаяся во всех соотношениях с водой и многими органическими растворителями. Метиловый спирт ядовит, он горит бледно-голубым некоптящим пламенем, с хлоридом кальция дает соединение СаС1 2 ·4СН 3 ОН, а с оксидом бария образует кристаллы ВаО·2СН 3 ОН. Метиловый спирт по запаху и вкусу почти не отличается от этилового. Известны случаи отравления метиловым спиртом, ошибочно принятым вместо этилового.
В природе метиловый спирт в свободном состоянии почти не встречается. Распространены его производные — эфирные масла, сложные эфиры и др. Раньше метиловый спирт получали путем сухой перегонки дерева. Поэтому и до сих пор неочищенный метиловый спирт, полученный сухой перегонкой дерева, называют древесным спиртом. В настоящее время используется несколько промышленных синтетических способов получения метилового спирта.
Применение. Действие на организм. Метиловый спирт широко используется в промышленности как растворитель лаков, красок, как исходное вещество для получения хлористого метила, диметилсульфата, формальдегида и ряда других химических соединений. Он применяется для денатурации этилового спирта, входит в состав антифриза.
Метиловый спирт может поступать в организм через пищевой канал, а также с вдыхаемым воздухом, содержащим пары этого спирта. В незначительных количествах метиловый спирт может проникать в организм и через кожу. Токсичность метилового спирта зависит от обстоятельств отравления и индивидуальной восприимчивости. Под влиянием метилового спирта происходит поражение сетчатки глаза и зрительного нерва, а иногда наступает неизлечимая слепота. Появление слепоты ряд авторов объясняют не действием метилового спирта, а действием его метаболитов (формальдегида и муравьиной кислоты). Метиловый спирт нарушает окислительные процессы и кислотно-щелочное равновесие в клетках и тканях. В результате этого наступает ацидоз. Отравление метиловым спиртом в ряде случаев заканчивается смертью. Опасность появления слепоты возникает уже после приема 4—15 мл метилового спирта. Смертельная доза принятого внутрь метилового спирта составляет 30—100 мл. Смерть наступает в результате остановки дыхания, отека головного мозга и легких, коллапса или уремии. Местное действие метилового спирта на слизистые оболочки проявляется сильнее, а наркотическое действие — слабее, чем у этилового спирта.
Одновременное поступление метилового и этилового спиртов в организм уменьшает токсичность метилового спирта. Это объясняется тем, что этиловый спирт уменьшает скорость окисления метилового спирта почти на 50 %, а следовательно, и уменьшает его токсичность.
Метаболизм. Метиловый спирт, поступивший в организм, распределяется между органами и тканями. Наибольшее количество его накапливается в печени, а затем в почках. Меньшие количества этого спирта накапливаются в мышцах, жире и головном мозгу. Метаболитом метилового спирта является формальдегид, который окисляется до муравьиной кислоты. Часть этой кислоты разлагается на оксид углерода (IV) и воду. Некоторое количество метилового спирта, не подвергшегося метаболизму, выделяется с выдыхаемым воздухом. Он может выделяться с мочой в виде глюкуронида. Однако с мочой могут выделяться и небольшие количества неизмененного метилового спирта. Метиловый спирт окисляется в организме медленнее, чем этиловый спирт.
При заключении об отравлении метиловым спиртом следует иметь в виду, что в организме (в норме) может содержаться 0,01—0,3 мг % метилового спирта и около 0,4 мг % муравьиной кислоты.
Обнаружение метилового спирта
Учитывая летучесть метилового спирта при изолировании его из биологического материала путем перегонки с водяным паром, приемник для дистиллята необходимо охлаждать холодной водой или льдом. Полученный дистиллят в большинстве случаев содержит незначительные количества метилового спирта. Поэтому этот дистиллят подвергают двух- или трехкратной перегонке с дефлегматором (см. гл. IV, § 5). Только после дефлегмации в дистилляте определяют наличие метилового спирта.
Для обнаружения метилового спирта применяют ограниченное число реакций на этот спирт. Большинство из них проводят после переведения его в формальдегид. Наличие метилового спирта можно доказать реакцией с салициловой кислотой.
Реакция образования метилового эфира салициловой кислоты. В пробирку вносят 1 мл дистиллята или другого исследуемого раствора, прибавляют 0,03—0,05 г салициловой кислоты и 2 мл концентрированной серной кислоты, а затем смесь осторожно нагревают на пламени горелки. При наличии метилового спирта в исследуемом растворе ощущается характерный запах метилового эфира салициловой кислоты:
При помощи этой реакции можно обнаружить еще 0,3 мг метилового спирта в пробе.
Эта реакция не специфична, так как при указанных выше условиях этиловый спирт с салициловой кислотой образует этиловый эфир, запах которого напоминает запах метилового эфира салициловой кислоты.
Окисление метилового спирта. Большинство реакций обнаружения метилового спирта основано на окислении его до формальдегида и определении последнего при помощи реакций окрашивания.
Прежде чем приступить к окислению метилового спирта до формальдегида, необходимо проверить наличие этого альдегида в исследуемом растворе.
Для окисления метилового спирта в формальдегид применяют перманганат калия или другие окислители:
5СН 3 ОН + 2КMnО 4 + 3H 2 SO 4 ---> 5НСНО + 2MnSO 4 + K 2 SO 4 + 8Н 2 О.
При взаимодействии ионов марганца с избытком перманганата калия может образоваться оксид марганца (IV):
3Mn 2+ + 2MnO 4 - + 2Н 2 О ---> 5MnO 2 + 4Н +.
Для связывания избытка перманганата калия и оксида марганца (IV) прибавляют сульфит натрия или другие восстановители (гидросульфит натрия, щавелевую кислоту и др.).
Описано несколько вариантов реакции окисления метилового спирта. Выбор этих вариантов зависит от содержания метилового спирта в пробе и от объема исследуемого раствора.
1. К 2 мл исследуемого раствора или дистиллята прибавляют 1 мл раствора перманганата калия, содержащего фосфорную кислоту (смесь 100 мл 3 %-го раствора перманганата калия и 15 мл 87 %-го раствора фосфорной кислоты). Жидкость нагревают при 50 С С на водяной бане в течение 10 мин, затем для удаления избытка окислителя прибавляют 1 мл 5 %-го раствора щавелевой кислоты в разбавленной (1:1) серной кислоте.
2. В микропробирку вносят каплю исследуемого раствора, прибавляют каплю 5 %-го раствора фосфорной кислоты и каплю 5 %-го раствора перманганата калия. Жидкость тщательно перемешивают в течение 1 мин, прибавляют небольшое количество твердого гидросульфита натрия, а затем содержимое пробирки взбалтывают до обесцвечивания. Если в пробирке появится нерастворимый бурый осадок оксида марганца (IV), то еще прибавляют каплю раствора фосфорной кислоты и немного гидросульфита натрия.
Обнаружение метилового спирта после его окисления. После окисления метилового спирта до формальдегида последний определяют при помощи реакций с хромотроповой кислотой, фуксин-сернистой кислотой и с резорцином. Эти реакции описаны выше (см. гл. IV, § 7).
Из этих реакций специфической на метиловый спирт (после его окисления) является реакция с хромотроповой кислотой. Не дают этой реакции этиловый, пропиловый, бутиловый, амиловый и изоамиловый спирты. Некоторые вещества, содержащие спиртовые группы, при выполнении указанной реакции могут давать желтую или коричневую окраску.
Метод микродиффузии. Обнаружение метилового спирта с помощью метода микродиффузии приведено выше (см. гл. III, § 3).
Предварительная проба на метиловый и этиловый спирты в моче и крови. В моче и крови метиловый спирт можно обнаружить при помощи описанной ниже предварительной пробы. К 1 мл мочи прибавляют 1 мл 10 %-го раствора дихромата калия в 50%-м растворе серной кислоты. Появление зеленой окраски указывает на наличие метилового и этилового спиртов в моче. При наличии 150 мг % этих спиртов в моче окраска появляется в течение 10 с, а при количествах, превышающих 75 мг %,— в течение 45 с.
Поскольку такую реакцию дают некоторые другие спирты и соединения, способные окисляться дихроматом калия, то положительные результаты этой реакции необходимо подтвердить другими предварительными пробами, которые описаны ниже.
Дополнительные исследования:
а) 5 мл крови или 10 мл мочи вносят в аппарат для перегонки ядовитых веществ с водяным паром и производят перегонку. Собирают первые 5 мл дистиллята, в котором определяют наличие метилового или этилового спирта. С этой целью 1 мл дистиллята смешивают с 1 мл 50 %-го раствора серной кислоты и 0,1 г салицилата натрия, а затем смесь нагревают на водяной бане. Появление характерного запаха метилсалицилата или этилсалицилата указывает на наличие соответствующего спирта в дистилляте;
б) к 2 мл указанного выше дистиллята прибавляют 1—2 капли 10 °/о-го раствора гидроксида натрия, а затем несколько капель раствора иода в иодиде калия до появления стойкой желтой окраски. Затем смесь нагревают на водяной бане. Образование желтых кристаллов или появление специфического запаха йодоформа свидетельствует о том, что в моче или в крови содержится этиловый спирт. Этой реакции не мешает наличие метилового спирта в дистилляте. Ацетон дает такую же реакцию, как и этиловый спирт;
в) в пробирку вносят 2 мл дистиллята и по каплям прибавляют 5 °/о-й раствор перманганата калия до тех пор, пока перманганат не перестанет обесцвечиваться. Затем в пробирку по каплям прибавляют 10 %-й раствор щавелевой кислоты до обесцвечивания раствора. После этого прибавляют еще одну каплю раствора щавелевой кислоты. К этой жидкости прибавляют 0,1 г хромотроповой кислоты и осторожно по стенкам пробирки приливают 1,5 мл концентрированной серной кислоты с таким расчетом, чтобы кислота попала под дистиллят и не смешалась с ним. Появление красной или фиолетовой окраски на границе раздела двух жидкостей указывает на наличие метилового спирта в дистилляте.
Эта предварительная проба применяется для обнаружения метилового и этилового спиртов в моче и крови.