
- •Содержание
- •Введение § 1. Предмет и задачи токсикологической химии, ее связь с другими дисциплинами
- •§ 2. Краткий исторический очерк возникновения и развития отечественной токсикологической химии
- •Глава I. Общие вопросы химико-токсикологического анализа
- •§ 1. Объекты химико-токсикологического анализа. Вещественные доказательсва
- •§ 2. Особенности химико-токсикологического анализа
- •§ 3. Осмотр объектов исследования и определение некоторых их свойств
- •§ 4. Предварительные пробы в химико-токсикологическом анализе
- •§ 5. План химико-токсикологического анализа
- •§ 6. Организация органов судебно-медицинской и судебно-химической экспертизы в ссср
- •§ 7. Эксперт-химик
- •§ 8. Правила судебно-химической экспертизы вещественных доказательств
- •§ 9. Акт судебно-химической экспертизы вещественных доказательств
- •§ 10. Некоторые вопросы терминологии в токсикологической химии
- •§ 11. Классификация ядовитых и сильнодействующих веществ в токсикологической химии
- •Глава II. Отравления и некоторые вопросы токсикокинетики ядов
- •§ 1. Отравления и их классификация
- •§ 2. Пути поступления ядов в организм
- •§ 3. Всасывание ядов в организме
- •§ 4. Распределение ядов в организме
- •§ 5. Связывание ядов в организме
- •§ 6. Выделение ядов из организма
- •§ 7. Факторы, влияющие на токсичность химических соединений
- •§ 8. Методы детоксикации
- •§ 9. Метаболизм чужеродных соединений
- •§ 10. Окисление чужеродных соединений
- •§ 11. Восстановление чужеродных соединений
- •§ 12. Гидролиз чужеродных соединений
- •§ 13. Дезалкилирование, дезаминирование и десульфирование чужеродных соединений
- •§ 14. Другие метаболические превращения
- •§ 15. Реакции конъюгации
- •§ 16. Посмертные изменения лекарственных веществ и ядов в трупах
- •§ 17. Разложение биологического материала после наступления смерти
- •§ 18. Изменение ядов при разложении трупов
- •Глава III. Методы анализа, применяемые в токсикологической химии
- •§ 1. Метод экстракции
- •§ 2. Микрокристаллоскопический анализ
- •§ 3. Метод микродиффузии
- •Глава IV. Ядовитые и сильнодействующие вещества, изолируемые из биологического материала перегонкой с водяным паром
- •§ 1. Аппараты для перегонки с водяным паром
- •§2. Влияние рН среды на перегонку химических соединений с водяным паром
- •§ 3. Перегонка ядовитых веществ с водяным паром из подкисленного биологического материала
- •§ 4. Перегонка ядовитых веществ с водяным паром из подкисленного, а затем из подщелоченного биологического материала
- •§ 5. Фракционная перегонка веществ, содержащихся в дистиллятах
- •§ 6. Синильная кислота
- •§ 7. Формальдегид
- •§ 8. Метиловый спирт
- •§ 9. Этиловый спирт
- •§ 10. Изоамиловый спирт
- •§ 11. Ацетон
- •§ 12. Фенол
- •§ 13. Крезолы
- •§ 14. Хлороформ
- •§ 15. Хлоралгидрат
- •§ 16. Четыреххлористый углерод
- •§ 17. Дихлорэтан
- •§ 18. Реакции, позволяющие отличить хлорпроизводные друг от друга
- •§ 19. Тетраэтилсвинец
- •§ 20. Уксусная кислота
- •§ 21. Этиленгликоль
- •Глава V. Ядовитые и сильнодействующие вещества, изолируемые из биологического материала подкисленным этиловым спиртом или подкисленной водой
- •§ 1. Развитие методов выделения алкалоидов и других азотистых оснований из биологического материала
- •§ 2. Влияние рН среды на изолирование алкалоидов и других азотистых оснований из биологического материала
- •§ 3. Влияние состава извлекающих жидкостей на изолирование алкалоидов и других азотистых основании из биологического материала
- •§ 4. Влияние подкисленной воды и подкисленного спирта на извлечение примесей, переходящих в вытяжки из биологического материала
- •§ 5. Очистка вытяжек из биологического материала от примесей
- •§ 6. Экстракция алкалоидов и других токсических веществ из вытяжек
- •§ 7. Обнаружение ядовитых веществ, изолируемых подкисленной водой или подкисленным этиловым спиртом
- •§ 8. Количественное определение токсических веществ, изолированных подкисленной водой или подкисленным спиртом
- •§ 9. Метод выделения токсических веществ, основанный на изолировании их этиловым спиртом подкисленным щавелевой кислотой
- •§ 10. Метод выделения токсических веществ, основанный на изолировании их водой, подкисленной щавелевой кислотой
- •§ 11. Метод выделения токсических веществ, основанный на изолировании их водой, подкисленной серной кислотой
- •§ 12. Барбитураты и методы их исследования
- •§ 13. Барбамил
- •§ 14. Барбитал
- •§ 15. Фенобарбитал
- •§ 16. Бутобарбитал
- •§ 17. Этаминал-натрий
- •8. Обнаружение этаминала-натрия по уф- и ик-спектрам.
- •§ 18. Бензонал
- •§ 19. Гексенал
- •§ 20. Производные ксантина
- •§ 21. Кофеин
- •§ 22. Теобромин
- •§ 23. Теофиллин
- •§ 24. Наркотин
- •§ 25. Меконовая кислота
- •§ 26. Меконин
- •§ 27. Ноксирон
- •§ 28. Салициловая кислота
- •§ 29. Антипирин
- •§ 30. Амидопирин
- •§ 31. Фенацетин
- •§ 32. Хинин
- •§ 33. Опий и омнопон
- •§ 34. Морфин
- •§ 35. Кодеин
- •§ 36. Папаверин
- •§ 37. Галантамин
- •§ 38. Анабазин
- •§ 39. Никотин
- •§ 40. Ареколин
- •§ 41. Кониин
- •§ 42. Атропин
- •§ 43. Скополамин
- •§ 44. Кокаин
- •§ 45. Стрихнин
- •§ 46. Бруцин
- •§ 47. Резерпин
- •§ 48. Пахикарпин
- •§ 49. Секуренин
- •§ 50. Эфедрин
- •§ 51. Аконитин
- •§ 52. Новокаин
- •§ 53. Дикаин
- •§ 54. Аминазин
- •§ 55. Дипразин
- •§ 56. Тизерцин
- •§ 57. Хлордиазепоксид
- •§ 58. Диазепам
- •§ 59. Нитразепам
- •§ 60. Оксазепам
- •§ 61. Апоморфин
- •§ 62. Дионин
- •§ 63. Промедол
- •Глава VI. Вещества, изолируемые из объектов минерализацией биологического материала
- •§ 1. Связывание «металлических ядов» биологическим материалом
- •§ 2. Методы минерализации органических веществ
- •§ 3. Сухое озоление и сплавление органических веществ
- •§ 4. Окислители, применяемые для минерализации органических веществ
- •§ 5. Отбор и подготовка проб биологического материала для минерализации
- •§ 6. Разрушение биологического материала азотной и серной кислотами
- •§ 7. Разрушение биологического материала хлорной, азотной и серной кислотами
- •§ 8. Разрушение биологического материала пергидролем и серной кислотой
- •§ 9. Дробный метод и систематический ход анализа «металлических ядов»
- •§ 10. Маскировка ионов в дробном анализе
- •§ 11. Реактивы, применяемые в дробном анализе «металлических ядов» для маскировки ионов
- •§ 12. Реакции, применяемые в химико-токсикологическом анализе для обнаружения ионов металлов
- •§ 13. Соединения бария
- •§ 14. Соединения свинца
- •§ 15. Соединения висмута
- •§ 16. Соединения кадмия
- •§ 17. Соединения марганца
- •§ 18. Соединения меди
- •§ 19. Соединения мышьяка
- •§ 20. Соединения серебра
- •§ 21. Соединения сурьмы
- •§ 22. Соединения таллия
- •§ 23. Соединения хрома
- •§ 24, Соединения цинка
- •§ 25. Соединения ртути
- •§ 26. Количественное определение «металлических ядов» в минерализатах
- •§ 27. Количественное определение ртути
- •§ 28. Экстракционно-фотоколориметрическое определение меди
- •Глава VII. Вещества, изолируемые из биологического материала настаиванием исследуемых объектов с водой
- •Минеральные кислоты и щелочи
- •§ 1. Серная кислота
- •§ 2. Азотная кислота
- •§ 3. Соляная кислота
- •§ 4. Гидроксид калия
- •§ 5. Гидроксид натрия
- •§ 6. Аммиак
- •§ 7. Нитриты
- •Глава VIII. Ядохимикаты и методы их химико-токсикологического анализа
- •§ 1. Классификация ядохимикатов
- •§ 2. Гексахлорциклогексан (гхцг)
- •§ 3. Гептахлор
- •§ 4. Фосфорсодержащие органические соединения и методы их анализа
- •§ 5. Хлорофос
- •§ 6. Карбофос
- •§ 7. Метафос
- •§ 8. Карбарил
- •§ 9. Гранозан
- •Глава IX. Вещества, определяемые непосредственно в биологическом материале
- •§ 1. Оксид углерода (II)
- •§ 2. Спектроскопический метод обнаружения оксида углерода (II) в крови
- •§ 3. Химические методы обнаружения оксида углерода (II) в крови
- •§ 4. Количественное определение оксида углерода (II) в крови
- •Приложение 1. Приготовление реактивов
- •Приложение 2. Приготовление хроматографических пластинок
- •Список рекомендуемой литературы
§ 15. Соединения висмута
Все объявления
ЯндексДирект
Дать объявление
Низкотемпературные камеры
низкотемпературные морозильники с температурным режимом -24С, -55С, -85С
Адрес и телефон · www.winecoolers.ru
Применение и токсичность соединений висмута. Отравление висмутом может наступить после приема его соединений внутрь и при вдыхании пыли, содержащей этот металл. Соединения висмута применяются для получения сплавов, имеющих низкую температуру плавления, светящихся составов, хрустального стекла и т. д. При изготовлении указанных предметов пыль, содержащая соединения висмута, может поступать в организм и вызывать отравление. Некоторые соединения висмута применяются в медицине (основной нитрат висмута, салицилат висмута и др.). Они применяются для приготовления мазей, косметических средств и т. д. Висмут входит в состав некоторых препаратов, применяемых в медицине для лечения сифилиса и ряда других заболеваний. Некоторые соединения висмута применяются в химических лабораториях в качестве реактивов.
Ионы висмута, всосавшиеся в кровь, долгое время задерживаются в организме (в печени, почках, селезенке, легких и ткани мозга).
Висмут выводится из организма через почки, кишки, потовые железы и др. В результате накопления висмута в почках возможно их поражение. При выделении висмута из организма потовыми железами может быть зуд кожи и появление дерматозов.
Данные о наличии висмута как нормальной составной части клеток и тканей организма в литературе не приводятся.
Исследование минерализатов на наличие висмута
Для обнаружения висмута в минерализатах вначале выполняют предварительные реакции на ионы этого металла с тиомочевиной и оксином (8-оксихинолином). При положительном результате этих реакций висмут выделяют из минерализата в виде диэтилдитиокарбамата, который экстрагируют хлороформом. После прибавления кислоты к хлороформной вытяжке происходит разложение диэтилдитиокарбамата висмута. Образовавшиеся при этом ионы висмута переходят в водную фазу, которую используют для обнаружения указанных ионов при помощи соответствующих реакций.
Реакция с тиомочевиной. При взаимодействии ионов висмута с тиомочевиной могут образовываться различного состава тиомочевинные комплексы, имеющие лимонно-желтую окраску:
Реакции образования тиомочевинных комплексов висмута мешают окислители.
Выполнение реакции. В пробирку вносят 5 мл минерализата и прибавляют 3—5 мл насыщенного водного раствора тиомочевины. При наличии ионов висмута раствор приобретает лимонно-желтую окраску. Предел обнаружения: 0,4 мкг висмута в пробе. Граница обнаружения: 0,1 мг висмута в 100 г биологического материала.
Реакция с оксином основана на переведении ионов висмута в ацидокомплекс [ВiI 4 ] -, который при взаимодействии с оксином в кислой среде образует оранжево-красный осадок, представляющий собой ионный ассоциат (иодвисмутат оксина). Образование этого ионного ассоциата можно представить следующими уравнениями:
Этой реакции мешают окислители, которые выделяют иод из иодида калия, применяемого для получения ацидокомплекса [BiI 4 ] -. Кроме этого, реакции образования иодвисмутата оксина мешают катионы ряда металлов, которые дают осадки с оксином. Для маскировки мешающих ионов к смеси реагирующих веществ добавляют аскорбиновую кислоту, которая восстанавливает ионы железа (III), и сегнетовую соль, связывающую другие ионы, мешающие обнаружению висмута.
Выполнение реакции. В пробирку вносят 10 мл минерализата, прибавляют по 0,5 г аскорбиновой кислоты, сегнетовой соли и иодида калия. При этом появляется интенсивно-желтая окраска (образуется иодвисмутат), которая не должна переходить в синюю от прибавления капли раствора крахмала. При появлении синей окраски к смеси реагирующих веществ по каплям прибавляют 10 %-й раствор тиосульфата натрия до исчезновения этой окраски. После этого по стенкам пробирки к смеси, имеющей желтую окраску, осторожно прибавляют 1—2 мл 2 %-го раствора оксина в 2 н. соляной кислоте. На границе соприкосновения раствора оксина и находящейся в пробирке жидкости через 1— 2 мин появляется оранжево-желтый осадок иодвисмутата оксина.
Если в исследуемой пробе содержится незначительное количество ионов висмута, то указанный осадок может появиться только через 30—60 мин. Поэтому, не дожидаясь образования осадка, содержимое пробирки переносят в делительную воронку, в которую прибавляют 3 мл смеси равных объемов ацетона и амилацетата, а затем взбалтывают. При наличии ионов висмута в минерализате слой органических растворителей (ацетон— амилацетат) приобретает оранжево-розовую окраску. Предел обнаружения: 5 мкг висмута в пробе. Граница обнаружения: 0,1 мг висмута в 100 г биологического материала.
Описанные выше реакции на висмут с тиомочевиной и оксином являются предварительными. Отрицательный результат этих реакций указывает на отсутствие ионов висмута в минерализате. При положительном результате указанных выше реакций производят дальнейшее исследование минерализата на наличие ионов висмута. С этой целью ионы висмута выделяют из минерализата в виде комплекса с диэтилдитиокарбаминатом натрия.
Этот комплекс экстрагируют хлороформом, а затем разлагают кислотой.
Выделение ионов висмута из минерализата. К минерализату прибавляют раствор диэтилдитиокарбамата натрия. При этом ионы висмута с этим реактивом образуют внутрикомплексное соединение:
Кроме ионов висмута с диэтилдитиокарбаматом натрия дают внутрикомплексные соединения и некоторые другие ионы, которые могут содержаться в минерализате. Для маскировки этих ионов прибавляют раствор комплексона III (трилона Б). Образовавшийся комплекс диэтилдитиокарбамата висмута экстрагируют хлороформом, а затем разлагают азотной кислотой.
В делительную воронку вносят 10 мл минерализата, 0,1 г комплексона III и несколько капель 0,1 %-го спиртового раствора нильского голубого (см. Приложение 1, реактив 24), являющегося индикатором. К этой смеси прибавляют 3 н. раствор гидроксида натрия до рН=12 (до перехода синей окраски индикатора в розовую). После доведения содержимого делительной воронки до необходимого рН к жидкости еще прибавляют 2—3 мл 3 н. раствора гидроксида натрия, а затем в делительную воронку вносят 3 мл 1 %-го раствора диэтилдитиокарбамата натрия (в смеси равных объемов этилового спирта и воды) и 5 мл хлороформа. Содержимое делительной воронки взбалтывают в течение 0,5 мин, а затем хлороформный слой отделяют в другую делительную воронку. Для промывания хлороформного слоя к нему прибавляют 5 мл 0,3 н. раствора гидроксида натрия и взбалтывают. После взбалтывания хлороформного слоя с раствором щелочи отделяют водную фазу. Хлороформный слой, содержащий диэтилдитиокарбамат висмута, переносят в делительную воронку, прибавляют 3 мл 4 н. раствора азотной кислоты. Содержимое делительной воронки взбалтывают в течение 1 мин и отделяют хлороформный слой, который в дальнейшем не исследуют. Водную фазу подвергают исследованию на наличие ионов висмута при помощи реакций с бруцином, хлоридом цезия и тиомочевиной.
Реакция с бруцином и бромидом калия. На предметное стекло наносят несколько капель водной фазы, которую выпаривают досуха. На сухой остаток наносят каплю 2 н. раствора азотной кислоты, а затем прибавляют каплю насыщенного раствора бруцина в 1 н. серной кислоте и каплю 5%-го раствора бромида калия. При наличии ионов висмута сразу же или через несколько минут образуются желто-зеленые кристаллы, собранные в виде сфероидов.
Реакция с хлоридом цезия и иодидом калия. На предметное стекло наносят несколько капель водной фазы, которую выпаривают досуха. На сухой остаток наносят 1—2 капли 3 н. раствора соляной кислоты. Затем с одной стороны жидкости на предметном стекле помещают кристаллик хлорида цезия CsCl, а с другой — кристаллик иодида калия. Нанесенные кристаллики реактивов с помощью тонкой стеклянной палочки соединяют с жидкостью. При наличии ионов висмута в растворе образуются оранжево-красные кристаллы Cs[BiI 4 ], имеющие форму шестиугольников или шестилучевых звездочек. Предел обнаружения: 0,1 мкг висмута в пробе. Граница обнаружения: 0,1 мг висмута в 100 г биологического материала.
Реакция с тиомочевиной. В пробирку вносят 0,5 мл водной фазы, к которой прибавляют 0,5 мл насыщенного раствора тиомочевины. В присутствии ионов висмута появляется лимонно-желтая окраска.