
- •Механизм и биомеханика вдоха и выдоха. Использовать схему модели Дондерса. Перечислить и указать роль мышц вдоха и выдоха.
- •Альвеолярный воздух как газовая константа организма. Качественная и количественная характеристика. Механизмы, обеспечивающие постоянство состава альвеолярного воздуха для газообмена.
- •Характеристика давления в плевральной полости и легких в разные фазы дыхательного цикла. Его значение. Понятие пневмоторакса.
- •Механизмы газообмена в большом круге кровообращения. Роль карбоангидразы.
- •Характеристика кривой диссоциации оксигемоглобина. Факторы, влияющие на образование и диссоциацию оксигемоглобина. Принципы оксигемометрии, значение метода
- •Виды транспорта углекислого газа кровью в процентном соотношении. Роль карбоангидразы.
- •Роль бронхиального дерева в системе в дыхания. Механизмы регуляции тонуса бронхов. Факторы, влияющие на бронхиальную проводимость. Методы её оценки.
- •Понятие эластической тяги легких и поверхностного натяжения альвеол. Роль в биомеханике вдоха и выдоха. Значение сурфактанта.
- •Принципы пневмотахометрии, клиническое значение метода. Показа-тели нормы, физиологическое обоснование причин отклонений объёмной скорости вдоха-выдоха от нормы.
- •Характеристика жизненной ёмкости лёгких. Методы определения. Факторы, влияющие на её показатели.
- •Функциональная характеристика легочных объемов и емкостей. Спосо-бы их определения. Количественные показатели для человека в условиях покоя.
- •Спирометрия. Принцип и значение метода.
- •Спирография. Принцип метода. Количественная характеристика показа-телей спирограммы с обозначением на её схеме.
- •Локализация структур дыхательного центра. Экспериментальное доказа-тельство методом перерезок ствола мозга на разных уровнях.
- •Бульбарный дыхательный центр, локализация, роль в регуляции дыхания. Понятие автоматии дыхательного центра. Функциональная характеристика его нейронов.
- •Центральные механизмы ритмогенеза. Роль пневмотаксического и апнейстического центров.
- •Характеристика центров эфферентной иннервации основных дыхательных мышц с изображением анатомических схем. Их связь с нейрональными структурами дыхательного центра.
- •Характеристика защитных дыхательных рефлексов: рецепторных зон, центров, эффектов.
- •Значение рецепторов растяжения легких, блуждающего нерва в форми-ровании дыхательного ритма. Схема рефлекса Геринга-Брейера.
- •Функциональная система поддержания газового состава крови. Общая схема. Характеристика исполнительных элементов и способов регуляции конечного полезного результата.
- •Значение газового состава крови в регуляции дыхания. Принцип мульти-параметрического регулирования. Характеристика рецепторных зон. Значение эксперимента Фредерика.
- •Пневмография, принцип метода. Схемы пневмограмма в покое, при задержке дыхания, во время и после гипервентиляции. Причины их изменения.
- •31. Общая характеристика системы выделения. Роль почек, органов дыха-ния, пищеварения и потоотделения.
- •32. Нефрон как функционально-структурная единица почки. Его схема с обозначением основных элементов и процессов, происходящих в них.
- •33. Характеристика процесса фильтрации в нефроне. Фильтрационное давление и факторы, на него влияющие.
- •34. Нервные и гуморальные механизмы регуляции процессов фильтрации в нефроне.
- •35. Характеристика первичной мочи. Количество, скорость образования, состав. Факторы, влияющие на эти показатели.
- •36. Противоточно-множительная система почки (петля Генле). Механизм её функционирования. Роль в концентрировании мочи.
- •37. Характеристика объёмов и механизмов реабсорбции в проксимальных канальцах нефрона. Понятие о пороговых веществах.
- •38. Механизмы и объёмы реабсорбции в дистальных канальцах нефрона.
- •39. Характеристика процесса секреции в нефроне. Механизмы и виды секретируемых веществ. Методы исследования секреции.
- •40. Характеристика процессов в собирательной трубке нефрона. Механизмы в трансмембранного транспорта в ней веществ. Количественная характеристика интенсивности реабсорбции.
- •41. Характеристика объёма и состава конечной мочи. Процесс мочевыведе-ния. Его схема с иннервацией мочевого пузыря и сфинктеров.
- •42. Общая характеристика методов исследования функции почек.
- •43. Понятие клиренса. Принципы использования этого метода для оценки функции почек и способов выведения различных веществ с мочой.
- •44. Понятие внутреннего и внешнего контура в системе мочевыделения. Физио-логическая характеристика её элементов.
- •45. Эндокринная функция почек. Роль биологически активных веществ, инкретируемых почкой в кровь, в регуляции показателей гомеостаза.
- •46. Понятие «осмотического давления», его показатели. Значение для гомеостаза. Характеристика основных осмотически активных веществ плазмы крови.
- •47. Натрийуретический гормон. Механизмы выделения, его физиологичес-кие эффекты в регуляции водно-солевого баланса.
- •48. Баланс кальция в организме и его показатели в крови. Механизмы регу-ляции при участии почек и эндокринной системы.
- •49. Роль почек в поддержании осмотического давления плазмы крови: меха-низмы регуляции реабсорбции натрия и воды при отклонении показателей осмотического давления.
- •50. Роль антидиуретического гормона в регуляции водно-солевого баланса. Механизмы выделения и эффекты.
- •51. Роль почек в поддержании постоянного уровня калия в крови: характе-ристика регуляция его реабсорбции и секреции.
- •52. Механизмы, обеспечивающие поддержание оптимального объёма циркулиру-ющей крови. Характеристика аппарата контроля, центров и исполнительных элементов.
- •53. Механизмы, обеспечивающие поддержание осмотического давления плазмы крови при гиперосмии.
- •54. Соотношение внутриклеточной и внеклеточной воды в организме. Меха-низмы изменения этих показателей при дегидратации на фоне изотонии и при различных отклонениях показателей осмотического давления.
- •55. Схема функциональной системы, обеспечивающей регуляцию кислотно-осно-вного равновесия организма. Механизмы его восстановления при ацидозе с указа-нием динамики изменения рН крови.
- •56. Физиология юкстагломерулярного аппарата почек. Компоненты ренин-ангиотензиновой системы и их биологическое значение.
- •58.Механизмы, обеспечивающие поддержание оптимального объёма циркулирующей крови при кровопотере, с использованием схемы составных элементов фус.
- •Баланс натрия в организме и его показатели в крови. Механизмы регу-ляции при участии почек и эндокринной системы.
Виды транспорта углекислого газа кровью в процентном соотношении. Роль карбоангидразы.
Двуокись углерода – конечный продукт окислительных обменных процессов в клетках – переносится с кровью к легким и удаляется через них во внешнюю среду. Так же как и кислород, СО2 может переноситься как в физически растворенном виде, так и в составе химических соединений. Химические реакции связывания СО2 несколько сложнее, чем реакции присоединения кислорода. Это обусловлено тем, что механизмы, отвечающие за транспорт СО2 должны одновременно обеспечивать поддержание постоянства кислотно-щелочного равновесия крови и тем самым внутренней среды организма в целом.
Напряжение СО2 в артериальной крови, поступающей в тканевые капилляры составляет 40 мм рт.ст. В клетках же, расположенных около этих капилляров, напряжение СО2 значительно выше, так как это вещество постоянно образуется в результате метаболизма. В связи с этим физически растворенный СО2 переносится по градиенту напряжения из тканей в капилляры. Здесь некоторое количество углекислого газа остается в состоянии физического растворения, но большая часть СО2 претерпевает ряд химических превращений. Прежде всего происходит гидратация молекул СО2 с образованием угольной кислоты.
В плазме крови эта реакция протекает очень медленно; в эритроците же она ускоряется примерно в 10 тыс. раз. Это связано с действием фермента карбоангидразы. Поскольку этот фермент присутствует только в клетках, практически все молекулы СО2, участвующие в реакции гидратации, должны сначала поступить в эритроциты.
Следующая реакция в цепи химических превращений СО2 заключается в диссоциации слабой кислоты Н2СО3 на ионы бикарбоната и водорода.
Накопление НСО3- в эритроците приводит к тому, что между его внутренней средой и плазмой крови создается диффузионный градиент. Ионы НСО3- могут передвигаться по этому градиенту лишь в том случае, если при этом не будет нарушаться равновесное распределение электрических зарядов. В связи с этим одновременно с выходом каждого иона НСО3- должен происходить либо выход из эритроцита одного катиона, либо вход одного аниона. Поскольку мембрана эритроцита практически не проницаема для катионов, но сравнительно легко пропускает небольшие анионы, взамен НСО3- в эритроцит поступают ионы Сl-. Этот обменный процесс называется хлоридным сдвигом.
СО2 может связываться также путем непосредственного присоединения к аминогруппам белкового компонента гемоглобина. При этом образуется так называемая карбаминовая связь.
Гемоглобин, связанный с СО2, называется карбогемоглобином.
Содержание углекислого газа, находящегося в крови в виде химических соединений, непосредственно зависит от его напряжения. В свою очередь величина РСО2 определяется скоростью образования СО2 в тканях и его выделения легкими. Зависимость содержания СО2 от его напряжения описывается кривой, аналогичной кривой диссоциации оксигемоглобина.
Зависимость содержания СО2 от степени оксигенации гемоглобина называется эффектом Холдейна. Данный эффект частично обусловлен различной способностью оксигемоглобина и дезоксигемоглобина к образованию карбаминовой связи.