
- •9. Представление об астеносфере и литосфере. Роль астеносферы в реализации вертикальных и горизонтльных тектонических движений.
- •10. Слои пониженных скоростей сейсмических волн, их природа. Тектоническая расслоенность литосферы.
- •17. Метод фаций и мощностей. Его обоснование и применение.
- •23. Палеомагнитные методы изучения тектонических движений.
- •28. Современные рифты – континентальные и океанские: Рельеф, тектоника, сейсмичность, тепловой поток, вулканизм, движения
- •30. Происхождение рифтовых зон: пассивный и активный механизм заложения.
- •31. Асимметричные хребты.
- •41. Кинематика субдукции, главные варианты.
- •42.Правило ортогональности субдукцйи, его объяснение и использование.
- •43. Сейсмофокальные зоны беньофа. Их глубинность, профили, строения, напряжения в очагах.
- •44. Гравиметрические и магнитные аномалии над зонами субдукции, распределение теплового потока.
- •45. Магматизм зон субдукции, закономерности его размещения.
- •46. Связь глубинных зон субдукции с их вулканическими поясами по данным геофизики.
- •47. Специфика состава магм над зонами субдукции.
- •48. Субдукционная аккреция и субдукционная эрозия, их геологическое выражение.
- •2 Механизма эрозии:
- •49. Выявление и реконструкция древних зон субдукции.
- •52. Области коллизии континентальной литосферы: рельеф, структура, движения, вулканизм, глубинная характеристика.
- •53. Горячие точки и мантийные плюмы
- •56. Островные дуги энсиалические и энсиматические.
- •57. Различие в строении и происхождении краевых морей.
- •58. Междуговые бассейны, их происхождение и развитие.
- •60. Региональные надвиги, покровы, шарьяжи. Параутохтоны. Антиформы и синформы.
- •61. Офиолиты, их происхождение и структурное положение. Тектонический меланж.
- •63. Концепция террейнов и изучение складчатых поясов.
- •64. Развитие складчатых поясов и циклы Вильсона.
- •66.Развитие складок во времени, фазы и эпохи складчатости.
- •67. Древние платформы континентов, их строение.
44. Гравиметрические и магнитные аномалии над зонами субдукции, распределение теплового потока.
Гравиметрия: резкие аномалии силы тяжести, вытянутые вдоль зоны субдукции, при ее пересечении сменяются в закономерной последовательности. Перед глубоководным желобом в океане обычно прослеживается положительная аномалия до 40-60 мГл, приуроченная к краевому валу. Она обусловлена упругим антиклинальным изгибом океанской литосферы у начала зоны субдукции. Далее следует интенсивная отрицательная аномалия (120-200, до 300 мГл), которая протягивается над глубоководным желобом, будучи смещена на несколько километров в сторону его островодужного борта. Эта аномалия коррелирует с тектоническим рельефом литосферы, а также во многих случаях с наращиванием мощности осадочного комплекса. По другую сторону глубоководного желоба над висячим крылом зоны субдукции наблюдается высокая положительная аномалия (100-300 мГл). Сопоставление наблюденных значений силы тяжести с расчетными подтверждает, что этот гравитационный максимум может быть обусловлен наклонной субдукцией в астеносферу более плотных пород относительно холодной литосферы. В островодужных системах на продолжении гравитационного профиля обычно следуют небольшие положительные аномалии над бассейном краевого моря.
Геотермические наблюдения обнаруживают снижение теплового потока по мере погружения относительно холодной литосферы под остро-водужный (или континентальный) борт глубоководного желоба. Однако дальше, с приближением к поясу активных вулканов, тепловой поток резко возрастает.
45. Магматизм зон субдукции, закономерности его размещения.
Размещение: Пространственная взаимосвязь мощных поясов современного вулканизма с глубоководными желобами, зонами Беньофа и другими проявлениями субдукции вполне отчетлива. На примере вулканов Японии установили, что цепи активных вулканов размещаются над среднеглубинной частью сейсмофокальной зоны. В дальнейшем стало ясно, что это закономерность, которая прослеживается во всех зонах субдукции. Глубина залегания наклонной сейсмофокальной зоны под вулканами варьирует от 60 до 350 км, но максимум магматической активности наблюдается над интервалом 100-200 км. Удаленность вулканов от желоба находится в обратной зависимости от наклона сейсмофокальной зоны. Чем больше угол наклона, тем ближе к желобу проявляется вулканизм, такая закономерность выдерживается глобально. Линияя, ограничивающая вулканический пояс со стороны желоба называется вулканическим фронтом – 120-250 км от глубоководного желоба. С противоположной стороны граница вулканических поясов не столь резкая. Общая ширина субдукционных вулканических поясов от нескольких десятков километров до 175-200 км, местами даже несколько больше.
Глубинные корни: Поскольку на соответствующих глубинах слэб движется среди астеносферного вещества и сейсмические очаги находятся внутри него, уменьшение сейсмичности под вулканами скорее всего означает снижение упругих свойств погружающейся литосферы при отделении флюидов или даже частичном плавлении. Этот магмогенерирующий отрезок зоны субдукции - область, где процессы магмогенеза только начинаются, чтобы продолжиться над субдуцирующей плитой в мантийном клине и земной коре вплоть до близповерхностных магматических камер в фундаменте вулканов. Глубинные корни вулканического пояса, отмеченные снижением скоростных и упругих характеристик пород, отчетливо прослеживаются сейсмической томографией — вплоть до поверхности слэба.
Специфика состава магм над зонами субдукции.
На состав вулканитов влияют:
г
лубина залегания зоны Беньофа,
строение висячего крыла зоны субдукции,
скорость субдукции,
эволюция зоны субдукции
Латеральная: калий, рубидий стронций вглубину субдукции увеличивается, убывает
Fe/Mg
В направлении т жёлоба толеитовая (толеитовый базальт, железистый дацит) сменяется известково щелочной (глинозёмный базальт-риолит), в тылу дуги – шошонитовой (шошонитовый базальт-трахит)
РУДА: Au, Cr, Ni,Cu- Zn? Pb, Mo – под дугой Sn-Wo-U