
- •9. Представление об астеносфере и литосфере. Роль астеносферы в реализации вертикальных и горизонтльных тектонических движений.
- •10. Слои пониженных скоростей сейсмических волн, их природа. Тектоническая расслоенность литосферы.
- •17. Метод фаций и мощностей. Его обоснование и применение.
- •23. Палеомагнитные методы изучения тектонических движений.
- •28. Современные рифты – континентальные и океанские: Рельеф, тектоника, сейсмичность, тепловой поток, вулканизм, движения
- •30. Происхождение рифтовых зон: пассивный и активный механизм заложения.
- •31. Асимметричные хребты.
- •41. Кинематика субдукции, главные варианты.
- •42.Правило ортогональности субдукцйи, его объяснение и использование.
- •43. Сейсмофокальные зоны беньофа. Их глубинность, профили, строения, напряжения в очагах.
- •44. Гравиметрические и магнитные аномалии над зонами субдукции, распределение теплового потока.
- •45. Магматизм зон субдукции, закономерности его размещения.
- •46. Связь глубинных зон субдукции с их вулканическими поясами по данным геофизики.
- •47. Специфика состава магм над зонами субдукции.
- •48. Субдукционная аккреция и субдукционная эрозия, их геологическое выражение.
- •2 Механизма эрозии:
- •49. Выявление и реконструкция древних зон субдукции.
- •52. Области коллизии континентальной литосферы: рельеф, структура, движения, вулканизм, глубинная характеристика.
- •53. Горячие точки и мантийные плюмы
- •56. Островные дуги энсиалические и энсиматические.
- •57. Различие в строении и происхождении краевых морей.
- •58. Междуговые бассейны, их происхождение и развитие.
- •60. Региональные надвиги, покровы, шарьяжи. Параутохтоны. Антиформы и синформы.
- •61. Офиолиты, их происхождение и структурное положение. Тектонический меланж.
- •63. Концепция террейнов и изучение складчатых поясов.
- •64. Развитие складчатых поясов и циклы Вильсона.
- •66.Развитие складок во времени, фазы и эпохи складчатости.
- •67. Древние платформы континентов, их строение.
30. Происхождение рифтовых зон: пассивный и активный механизм заложения.
Геолого-геофизические данные о строении и современной активности континентальных и океанских рифтов обнаруживают проявление двух главных механизмов рифтогенеза: деформационного, при котором растяжение реализуется разрывными и вязкими деформациями коры в сравнительно узкой полосе с уменьшением ее мощности и образованием «шейки» и механизма гидравлического расклинивания, при котором активная роль принадлежит базальтовой магме, раздвигающей породы земной коры в направлении растягивающих напряжений.
Деформационный рифтогенез. Растяжение в рифтах происходит посредством сбросовых смещений. При этом по мере растяжения сбросы изгибаются и выполаживаются в своей нижней части, становятся листрическими. + локальное утонение литосферы под действием растягивающих напряжений с образованием симметрично построенной рифтовой зоны.
Б. Вернике (1981) предложил модель, учитывающую асимметрию многих рифтов. Два механизма деформационного рифтогенеза, соответствующие двум разным геологическим типам рифтов (симметричному и асимметричному), сходны в основах построения моделей, они совместимы и могут действовать рядом в единой зоне растяжения литосферы.
Механизм гидравлического расклинивания. При наличии на глубине очагов базальтовой магмы - иной механизм рифтогенеза. Быстрый подъем базальтовой магмы к поверхности, его обеспечивает расклинивающий эффект, который оказывает магма на породы земной коры. Характерны особенности линейных даек. Как правило, они внедрены по вертикальным трещинам
Гидравлическим разрывом (гидроразрывом) называют процесс образования и распространения трещин в горных породах под давлением жидкости, в том числе магматического расплава. Для развития гидроразрыва достаточно, чтобы давление жидкости лишь незначительно превышало минимальное сжимающее напряжение в породе.
Таким образом, при наличии на глубине резервуара жидкой магмы возникают условия для разрастания слоев земной коры под действием множества параллельных гидроразрывов, в каждом из которых нагнетание расплава приводит к раздвигу вмещающих пород.
Оба механизма рифтогенеза — деформационный и гидравлический — участвуют в формировании как континентальных, так и океанских рифтов, но в первом случае доминирует деформационный, во втором — гидравлический механизм. Возможно поочередное или совместное (на разных уровнях) проявление обоих механизмов в одной рифтовой зоне.
31. Асимметричные хребты.
Ведущая роль отводится крупному пологому (10-20°) вязкому сбросу, смещающему всю литосферу и контролирующему динамотермальный метаморфизм: соответствующие метаморфические комплексы обнажаются при дальнейшем сбросовом смещении или выступают на поверхности в куполообразных структурах — так называемых метаморфических ядрах. По мере растяжения висячее крыло осложняется ступенчатой системой листрических сбросов, в то время как на другом крыле все больше обнажается пологая зона главного сброса с ее метаморфитами. Здесь утонение литосферы определяется рассекающим ее пологим сбросом, и оно получается максимальным не под осевой частью рифта, а под висячим крылом. Кроме того, оно происходит здесь за счет смещения в сторону тяжелой мантийной части разреза, поэтому средняя плотность самой утоненной литосферы получается низкой. Эта легкая литосфера изостатически поднимается, под ней приближается к поверхности астеносферный выступ, а над ним, на приподнятом висячем крыле рифта, проявляется вулканизм. Подобная асимметрия хорошо известна в Восточно-Африканском поясе, вдоль которого чередуются рифты с относительно приподнятым западным и восточным крылом. В дальнейшем термально-обусловленные опускания несколько сглаживают изначальный тектонический рельеф, так как они определяются утонением литосферы и поэтому максимальны под приподнятым крылом рифта.
33, высоко и низкоскоростные зоны спрединга.
Быстрые :
Наличие магматических камер, линзы под неовулканической зоной, м= 200 м, период излияния 100тни лет – щитовые вулканы –покровные лавы
Трубовые лавы
Канатные лавы
Лопостные – по неровным поверхностям, уступам
Захороняется вода-пар-пустотелые колонны
ЛАВЫ ПОРФИРОВЫЕ-не успевают дифференцироваться
Гидротермы
Чётко выражена морфология осевого гребня
34. Зоны трансформных разломов.
Сегментация зон спрединга, трансформные разломы. Рифтовые зоны океана разбиты многочисленными поперечными разломами. Поперечные нарушения между сегментами принадлежат категории трансформных разломов — особого кинематического типа разрывов со сдвиговым смещением, которые переносят, трансформируют горизонтальное движение литосферы от одной активной границы (дивергентной или конвергентной) к другой. Трансформные разломы рифтовых зон соответствуют типу «хребет — хребет», т. е. снимают горизонтальные напряжения между двумя отрезками рифтовой зоны. На некоторых отрезках Срединно-Атлантического хребта они следуют через каждые 100-50 км и даже чаще.
Причины накопления напряжений между сегментами срединно-океанского хребта связаны с неравномерностью спрединга. Вдоль хребта меняется его скорость, симметричный спрединг может соседствовать с асимметричным.
Во всех случаях такие трансформные разломы вторичны по отношению к рифтогенному раздвигу, и это определяет свойственное им направление горизонтальных перемещений. Например, сочленение двух сегментов Срединно-Атлантического хребта по трансформному разлому Чарли — Гиббс имеет вид левостороннего сдвига, в то время как реальное смещение на активном отрезке между раскрывающимися рифтовыми долинами правостороннее.
Если в ходе спрединга происходит незначительная переориентировка движения расходящихся литосферных плит, т. е. угол между направлением их раздвига и простиранием рифтов отклоняется от прямого, то появляется компонента движения, перпендикулярная трансформному разлому. В зависимости от геометрических соотношений это порождает в зоне разлома или сжатие, или растяжение («транспрессию» или «транстенсию»). В первом случае нарушается свободное скольжение, наблюдаются деформации сжатия и поднятие, выраженное в подводном рельефе. Во втором случае происходит раздвиг, образование расщелин с крутыми обрывистыми склонами, с поднятыми из глубины тектоническими клиньями серпентинизированных перидотитов мантии и с повышенным тепловым потоком. Ярким примером служит расщелина вдоль разлома Романш в Экваториальной Атлантике.
Широко известен и детально изучен разлом Сан-Андреас в Калифорнии — континентальный отрезок трансформной границы Тихоокеанской и Северо-Американской литосферных плит со смещением типа «хребет —хребет» между спрединговыми системами хребта Горда и Калифорнийского залива. На канадском отрезке границей тех же двух плит служит разлом Королевы Шарлотты — трансформная система типа «хребет — дуга». Алеутская зона субдукции демонстрирует другой случай, когда определяющую роль играет кривизна дуги в сочетании с направлением субдукции: вдоль дуги с востока на запад субдукция становится все более косоориентированной и, наконец, у Командорских островов переходит в трансформное смещение
35. Система линейных магнитных аномалий.
Линейные магнитные аномалии и определение скорости спрединга. Еще в 60-х гг. прошлого века изучение характерных для океанской коры линейных магнитных аномалий (с чередованием прямой и обратной полярности) обнаружило ряд закономерностей:
1. линейные аномалии следуют параллельно сейсмически и магматически активной оси рифтовых зон океана и размещаются симметрично
2. в любой активной рифтовой зоне Мирового океана опознается одна и та же последовательность аномалий, повторяются характерные особенности каждой аномалии. Поэтому были приняты порядковые номера
3. расстояние между одноименными аномалиями в разных рифтовых зонах может быть различным. Оно не остается постоянным и при прослеживании вдоль одной и той же протяженной зоны;
в некоторых случаях симметрия системы линейных аномалий относительно рифтовой оси нарушается тем, что по одну сторону аномалии размещаются сжато, по другую — разреженно.
При кристаллизации базальтовой магмы в зоне раздвига термоостаточная намагниченность фиксирует в горных породах геомагнитные характеристики. По мере своего формирования океанская кора отодвигается от оси спрединга и, подобно магнитной ленте, записывает вариации геомагнитного поля, в том числе инверсии его полярности. Поскольку наращивание происходит по обе стороны от оси спрединга, образуются две дублирующие одна другую магнитные записи. Расстояние между одноименными аномалиями на разных пересечениях варьирует в зависимости от скорости спрединга. По этой же причине оно может различаться и на едином пересечении, если в одну сторону спрединг развивается быстрее, чем в другую.
И можно определять скорости спрединга по расстоянию между аномалиями при условии датирования этих аномалий. Были использованы успехи магнитостратиграфии вулканических и осадочных пород континентов, поскольку и спрединг, и напластование слоистых толщ дают запись одних и тех же вариаций геомагнитного поля, хотя и развернутую в первом случае по горизонтали, а во втором — по вертикали.
В 1966 г. появилась магнитохронологической шкала А. Кокса (4,5 млн лет. ). Скорости спрединга варьируют от долей сантиметра до 15-18 см/год.
Максимальные значения установлены на Восточно-Тихоокеанском поднятии от 13 до 23° ю. ш. Полная скорость раздвига литосферных плит на дивергентной границе вдвое больше скорости спрединга. (т.к. движение в разные стороны). По мере уточнения датировки линейных аномалий дна выявляются все более подробные сведения о том, как изменялась во времени скорость спрединга на том или ином отрезке срединно-океанского хребта.
Линейные магнитные аномалии — это изохроны океанской коры, что полностью подтвердилось при глубоководном бурении.
36. Различают два главных способа заложения и раскрытия рифтовых зон. Концепция активного рифтогенеза исходит из традиционного представления о первичности зародившегося на глубине восходящего тока астеносферного вещества, который поднимает и раздвигает литосферу, что и выражается континентальным и океанским рифтогенезом. Локализация рифтовой зоны предопределена в этом случае местом подъема мантийных течений, возбуждающих рифтогенез. Противоположная концепция пассивного рифтогенеза принимает в качестве первопричины боковое воздействие внешних сил на литосферную плиту, способную передать напряжения на большие расстояния. Рифтогенез начнется, если обусловленные внешними силами горизонтальные растягивающие напряжения будут достаточно высоки, чтобы произошло растяжение и уменьшение мощности литосферы в какой-то благоприятно ориентированной ослабленной зоне. В результате под линейной зоной растяжения формируется характерный для рифтовых зон глубинный механизм, поддерживающий дальнейшее разрастание рифта и питающий его магматизм. При пассивном рифтогенезе локализация рифтовой зоны предопределяется механической неоднородностью литосферной плиты, размещением зон, способных воспринять наведенные извне тектонические напряжения. Поскольку при таком заложении рифтовая зoнa трассируется избирательно, по ослабленным зонам, то нередко раскол проходит через горячие точки как участки, прогретые мантийной струей. Пассивное заложение и развитие наиболее вероятно для большинства современных рифтовых зон, входящих в глобальную систему. Одно из свидетельств — наследование древних структур континентальной коры.
Можно полагать, что именно пассивный механизм рифтогенеза обеспечивает перестройку систем спрединга при их приспособлении к изменяющейся геометрии активных окраин согласно «правилу ортогональности субдукции». Ярким примером служит рассмотренный Г. Менардом распад единой плиты Фаральон в позднем кайнозое, когда новые оси спрединга заложились в ориентировке, обеспечивающей ортогональную субдукцию более мелких плит Наска, Кокос, Ривера, Хуан-де-Фука
С концепцией пассивного рифтогонеза лучше согласуется и наблюдаемая миграция срединно-океанских хребтов, размеры которой находятся в полном соответствии со скоростью спрединга. Так, происходит центробежное перемещение Срединно-Атлантической, Африкано-Ан-тарктической, Юго-Западной Индоокеанской, Аравийско-Индийской и Красноморской осей спрединга относительно Африканской плиты, которую они окружают и наращивают (см. рис. 5.1). В целом распад Пангеи включает в себя центробежную миграцию не только все более дробных литосферных плит, но и разделяющих их осей спрединга (см. рис. 10.10).
37 нет
38. Горизонтальные движения относительные и абсолютные, определение их направления и скорости.
Насчитывается около 40 горячих точек в океанах и на континентах, и почти со всеми связаны проявления вулканической деятельности. Характерна щелочно-базальтовая магма, происходящая из мантии, что указывает на глубинное положение «корней» горячих точек.
1й способ определения абсолютных движений: Если исходить из их стационарности, то можно определять не относительные, а «абсолютные» движения литосферных плит, измеряемые по отношению к заякоренным в мантии горячим точкам. Пример: Гавайский и императорский вулканические хребты, где начиная от Гавайских к возраст потухших вулканов закономерно возрастает до эоценового (42 млн лет) на северо-западной оконечности цепи. Здесь она сочленяется с цепью подводных вулканических возвышенностей - Императорским хребтом. Простирание этого хребта не ЗСЗ—ВЮВ как Гавайского, а СЗ—ЮВ; возраст вулканических построек возрастает от эоценового до позднемелового (78 млн лет). Таким образом, перед нами картина закономерной миграции во времени и в пространстве вулканических центров.
2й способ определения абсолютных движений - используя так называемую безмоментную систему отсчета. Она основана на том, что каждая из существующих в данное время плит сообщает мезосфере вращательный момент, который можно вычислить, зная границы плит и их угловую скорость. Затем надо найти такую систему, в которой суммарный момент, сообщаемый мезосфере всеми плитами, равен нулю. Сравнение полученных результатов с данными по горячим точкам показывает довольно хорошее, но все же неполное соответствие. Последнее указывает на то, что горячие точки испытывают относительно друг друга некоторые перемещения, но они незначительны по сравнению с движениями самих литосферных плит. Недавно благодаря специальной программе палеомагнитного опробования вулканитов Императорского хребта было доказано и измерено меридиональное смещение формировавшей его мантийной струи.
39. Глубинное строение зон субдукции.
Субдукция - процесс, при котором на конвергентной границе сходятся континентальная и океанская литосфера или океанская с океанской. При их встречном движении более тяжелая литосферная плита (всегда океанская) уходит под другую, а затем погружается в мантию.
К концу 50-х гг. Г. Штилле высказал мысль, что образование глубоководных желобов, сопутствующих им отрицательных гравианомалий и уходящих в мантию сейсмофокальных зон сопряжено с наклонным пододвигани-ем океанской земной коры; на определенной глубине она подвергается плавлению, порождая вулканические цепи, протянувшиеся параллельно желобу.
По характеру взаимодействующих участков литосферы зоны субдукции делятся на 2 типа: окраинно-материковые зонами (андского, зондского и японского типа) и океанские зоны (марианского типа). Первые формируются там, где океанская литосфера субдуцирует под континент, вторые — при взаимодействии двух участков океанской литосферы.
Строение и субдукционный режим окраинно-материковых зон разнообразны. Для наиболее протяженной из них Андской (около 8 тыс. км) характерны пологая субдукция молодой океанской литосферы, господство сжимающих напряжений и горообразование на континентальном крыле.
Зондскую дугу отличает отсутствие таких напряжений, что делает возможным утонение континентальной коры, поверхность которой находится в основном ниже уровня океана; под нее субдуцирует более древняя океанская литосфера, уходящая на глубину под более крутым углом.
Разновидностью окраинно-материковых можно считать и зоны субдукции японского типа, представление о которых дает пересечение, проходящее через Японский желоб — Хонсю — Японское море. Характерно наличие краевого морского бассейна с участками новообразованной коры океанского или субокеанского типа. Геолого-геофизические и палеомагнитные данные позволяют проследить раскрытие краевого Японского моря по мере того, как от азиатской окраины отчленялась полоса континентальной литосферы. Постепенно изгибаясь, она превратилась в Японскую островную дугу.
При образовании зон субдукции океанского (марианского) типа более древняя (и поэтому более мощная и тяжелая) океанская литосфера субдуцирует под более молодую, на краю которой образуется островная дуга. Пример: система южных Антил.