
- •Оглавление
- •130406 «Шахтное и подземное строительство» 32
- •130406 «Шахтное и подземное строительство» 62
- •130406 «Шахтное и подземное строительство» 89
- •4.Деформационный критерий прочности пород.
- •5. Деформационные характеристики пород, их физический смысл.
- •6. Длительная прочность пород.
- •7. Конструкции металлической рамной крепи, виды профиля, конструкции узлов податливости. Область применения податливой рамной крепи.
- •8. Коэффициент вязкости, его физический смысл и размерность.
- •9. Метод переменных модулей. На каком принципе основан данный метод и где применяется?
- •10. Набрыгбетонная крепь, сухой и мокрый способы нанесения набрызгбетонной смеси. Расчетная схема и исходные данные для расчета крепи.
- •11. Начальные и полные напряжения в массиве.
- •12. Начальное поле напряжений в массиве пород. Виды начального поля напряжений и их характеристика.
- •13. Новоавстрийский метод строительства тоннелей, характеристика метода.
- •14. Основные типы крепи. Предварительный выбор крепи.
- •15. Основные характеристики землетрясений. Виды сейсмических волн.
- •16. Оценка прочности крепи. Поясните содержание понятия «несущая способность крепи».
- •17. Оценка склонности пород к вывалообразованию.
- •18. Оценка устойчивости пород.
- •19. Параметры анкерной крепи, их определение.
- •20. Паспорт прочности горных пород.
- •21. Податливая крепь. Область применения, определение параметров.
- •22. Показатель пластичности пород.
- •23. Прочностные характеристики пород.
- •24. Расчет крепи при определенном действии различных нагрузок и воздействий. Расчет на горное давление.
- •25. Расчет крепи стволов, исходные данные.
- •26. Расчет крепи стволов, сооружаемых бурением, определение нагрузок на крепь.
- •27. Расчетная схема жесткой рамной крепи. Характеристики эквивалентного слоя и как они определяются?
- •28. Расчетная схема крепи. Виды нагрузок и воздействий.
- •29. Расчет обделки тоннеля, исходные данные.
- •30. Реологические характеристики горных пород.
- •31. Свойства и характеристики бетона, применяемого в подземном строительстве. Поясните термины: «класс бетона», «нормативное сопротивление», «расчетное сопротивление».
- •32. Теория прочности Кулона-Мора. Условие прочности при объемном сжатии.
- •33. Типы и виды анкерной крепи.
- •34. Устойчивость крепи. Какие виды крепи, и в каких случаях следует проверять на устойчивость.
- •35. Учет начальных смещений пород (до возведения крепи) при расчете крепи.
- •36. Характеристики деформирования пород за пределом прочности.
- •37. Характеристики ползучести пород.
- •38. Чугунная тюбинговая крепь, область применения.
- •39. Шарнирная крепь (обделка). Рациональное количество блоков в поперечном сечении выработки круглого сечения. Рациональное расположение шарниров. Область применения.
- •40. Экспериментально-аналитический метод расчета крепи.
- •2. Комбинированные способы проведения протяженных горных выработок.
- •3. Конструкции рамных крепей (деревянных, металлических и сборных железобетонных).
- •4. Конструкции и технология установки анкерной крепи.
- •5. Набрызг-бетонная крепь: назначение, область применения и механизация при нанесении набрызг-бетона.
- •6. Обменно-транспортные операции при проведении двухпутевых выработок.
- •7. Организация работ при проведении горной выработки. Основные положения составления графиков организации работ.
- •8. Основные типы горизонтальных горных выработок ограниченного сечения и их назначение.
- •9. Паспорт бвр. Требования епб, предъявляемые к паспорту бвр.
- •10. Паспорт крепления горных выработок: порядок составления и утверждения согласно пб.
- •11. Перечислите технологические схемы строительства камер ограниченного сечения.
- •12. Перечислите факторы, оказывающие влияние на выбор погрузочных машин.
- •13. Схемы и способы проветривания тупикового забоя протяженных горных выработок.
- •14. Технология возведения набрызг-бетонной крепи (сухое набрызг-бетониро-вание).
- •15. Технология возведения деревянной рамной крепи.
- •16. Технология возведения кольцевой металлической крепи.
- •17. Технология возведения металлической арочной крепи.
- •18. Технология возведения рамной железобетонной крепи.
- •19. Технология возведения сборных железобетонных крепей (сплошных).
- •20. Технология возведения сплошной каменной податливой крепи.
- •21. Технология проведения горных выработок в однородных мягких породах с помощью гидромеханизации.
- •22. Технология проведения горных выработок в однородных мягких породах с помощью бвр.
- •23. Технология проведения горных выработок с помощью механических инструментов.
- •24. Технология строительства тоннелей с использованием пилот-штольни.
- •25. Технология строительства тоннелей сплошным забоем.
- •26. Технология строительства тоннелей способом опертого свода.
- •27. Технология строительства тоннелей способом опорного ядра.
- •28. Технология строительства тоннелей уступным способом.
- •29. Технология строительства штреков по тонким пластам широким забоем.
- •30. Технологические схемы строительства наклонных стволов (включая устье).
- •31. Технологические схемы проведения горных выработок в однородных крепких породах с помощью бвр.
- •32. Технология проведения горных выработок в однородных мягких породах с помощью проходческих комбайнов.
- •33. Технологические схемы проведения горных выработок щитовым способом.
- •34. Технологические схемы сооружения камер околоствольного двора.
- •35. Технологические схемы строительства выработок большого поперечного сечения в мягких породах.
- •36. Технологические схемы возведения монолитной железобетонной крепи.
- •37. Технологические схемы возведения монолитной бетонной крепи.
- •38. Технологические схемы проведения горных выработок с использованием скреперных комплексов.
- •39. Типовые сечения горизонтальных горных выработок (форма и размеры поперечного сечения, материал и конструкция крепей). Требования пб.
- •40. Требования пб к зазорам в транспортных выработках.
- •Бвр при проходке стволов. Расчет количества шпуров.
- •Бвр при проходке стволов. Расчет объема взорванной породы.
- •4. Бвр при проходке стволов. Типы применяемых врубов при проходке стволов. Нарисовать схемы врубов.
- •Классификация вертикальных шахтных стволов по глубине.
- •6. Конструкции опорных венцов. Расстояния между опорными венцами в зависимости от крепости горных пород.
- •7. Комплексы оборудования для строительства глубоких стволов.
- •8. Комплексы оборудования для строительства стволов малой глубины.
- •9. Комплексы оборудования для строительства стволов средней глубины.
- •10. Конструкции устьев стволов. Определить величину гидростатического давления на крепь устья ствола на отметке 20 м. Уровень подземных вод находится на отметке 5 м.
- •11. Методика определения диаметра вертикального шахтного ствола графоаналитическим способом. Величина необходимых зазоров армировки по пб.
- •16. Определение оснащения стволов к проходке. Схемы оснащения стволов.
- •17. Определение подготовительного периода. Внеплощадочные работы. Указать максимальную норму продолжительности подготовительного периода.
- •18. Определение подготовительного периода. Внутриплощадочные работы. Указать минимальную норму продолжительности подготовительного периода.
- •19. Определение технологического отхода. Длина технологического отхода при последовательной, параллельной и совмещенной схеме строительства шахтных стволов.
- •23. Совмещенная технологическая схема строительства стволов. Достоинства, недостатки схемы. Нарисовать участок ствола с применяемым проходческим оборудованием, креплением и соответствующими размерами.
- •24. Сущность специального способа проходки стволов с искусственным замораживанием горных пород. Нарисовать схему одноступенчатой замораживающей станции.
- •25. Сущность специального способа проходки стволов с помощью металлических шпунтин. Виды металлических шпунтин. Нарисовать схему.
- •26. Сущность специального способа проходки стволов с помощью опускных крепей. Нарисовать схему.
- •27. Сущность специального способа проходки стволов с помощью сжатого воздуха. Нарисовать схему.
- •28. Сущность специального способа проходки стволов с помощью тампонажа. Нарисовать схему.
- •29. Схемы проветривания стволов.
- •30. Требования, предъявляемые к бурильным установкам. Марки бурильных установок.
- •31. Требования, предъявляемые к металлическим призабойным опалубкам. Высота опалубки в зависимости от крепости горных пород.
- •32. Требования, предъявляемые к погрузочным машинам. Классификация погрузочных машин по емкости грейфера.
- •33. Требования, предъявляемые к проходческим полкам.
- •36. Технология возведения чугунной тюбинговой крепи вертикального ствола. Нарисовать схему чугунного тюбинга.
- •37. Факторы, влияющие на выбор подъемных машин при проходке стволов.
- •38. Факторы, влияющие на размеры поперечного сечения стволов. Максимально допустимая скорость движения воздушной струи по стволу (в зависимости от назначения) согласно пб.
- •39. Формы поперечного сечения вертикальных стволов. Их применение. Нарисовать формы стволов.
- •3.Бетонные и железобетонные конструкции, работающие в условиях внецентренного сжатия.
- •4. Бетонные и железобетонные конструкции, работающие на изгиб. Расчет прочности изгибаемых элементов по нормальным сечениям. Элементы с одиночной и двойной арматурой. Расчетные формулы.
- •5. Бункера. Защита бункеров от истирания.
- •6. Виды нагрузок и воздействий на строительные конструкции.
- •7. Выбор подъемного каната.
- •8. Выбор подъемной машины.
- •9.Генеральный план промышленного предприятия. Технологическая основа построения генплана.
- •10. Железобетонный каркас многоэтажного здания.
- •11. Здания вентиляторов.
- •12. Здания калориферов.
- •13. Здания компрессоров.
- •14.Здания электроподстанций.
- •15. Зонирование территории промплощадки. Выбор промышленной площадки на спокойном рельефе. Выбор промышленной площадки на косогоре.
- •16. Классификация зданий и сооружений.
- •17. Котельные. Планировочные и конструктивные решения паровых и водогрейных, особенности проектирования котельных на твердом топливе.
- •18. Лесной склад.
- •19. Мероприятия по осушению и отводу вод.
- •20. Оборудование, располагаемое в станке копра.
- •21. Ограждающие конструкции.
- •22. Общие принципы объемно-планировочных решений одноэтажных промышленных зданий.
- •23. Общие сведения по расчету строительных конструкций. Понятия о предельных состояниях и расчет строительных конструкций по предельным состояниям.
- •24. Определение геометрических размеров копра и его частей.
- •25. Основные системы копров.
- •26. Основные элементы металлического каркаса одноэтажного здания.
- •27. Основные элементы сборного железобетонного каркаса.
- •28. Открытые распределительные устройства.
- •29. Перекрытия.
- •30. Покрытия.
- •31. Расчет копра на ветровую нагрузку.
- •32. Расчет элементов различного поперечного сечения при большом и малом эксцентриситете сжимающей силы.
- •37. Сущность железобетона, его преимущества и недостатки.
- •38. Типизация и стандартизация в строительстве.
- •39. Угольные склады.
- •40. Эстакады и галереи.
130406 «Шахтное и подземное строительство» 89
Проектирование горнотехнических зданий и сооружений 89
1. Архитектурно-строительные требования, предъявляемые к генплану. 89
2. Бетонные и железобетонные конструкции (общие положения). 89
3.Бетонные и железобетонные конструкции, работающие в условиях внецентренного сжатия. 90
4. Бетонные и железобетонные конструкции, работающие на изгиб. Расчет прочности изгибаемых элементов по нормальным сечениям. Элементы с одиночной и двойной арматурой. Расчетные формулы. 91
5. Бункера. Защита бункеров от истирания. 91
6. Виды нагрузок и воздействий на строительные конструкции. 92
7. Выбор подъемного каната. 93
8. Выбор подъемной машины. 93
9.Генеральный план промышленного предприятия. Технологическая основа построения генплана. 93
10. Железобетонный каркас многоэтажного здания. 94
11. Здания вентиляторов. 95
12. Здания калориферов. 96
13. Здания компрессоров. 96
14.Здания электроподстанций. 97
15. Зонирование территории промплощадки. Выбор промышленной площадки на спокойном рельефе. Выбор промышленной площадки на косогоре. 98
16. Классификация зданий и сооружений. 100
17. Котельные. Планировочные и конструктивные решения паровых и водогрейных, особенности проектирования котельных на твердом топливе. 101
18. Лесной склад. 101
19. Мероприятия по осушению и отводу вод. 101
20. Оборудование, располагаемое в станке копра. 103
21. Ограждающие конструкции. 103
22. Общие принципы объемно-планировочных решений одноэтажных промышленных зданий. 103
23. Общие сведения по расчету строительных конструкций. Понятия о предельных состояниях и расчет строительных конструкций по предельным состояниям. 105
24. Определение геометрических размеров копра и его частей. 106
25. Основные системы копров. 106
26. Основные элементы металлического каркаса одноэтажного здания. 108
27. Основные элементы сборного железобетонного каркаса. 109
28. Открытые распределительные устройства. 109
29. Перекрытия. 109
30. Покрытия. 110
31. Расчет копра на ветровую нагрузку. 111
32. Расчет элементов различного поперечного сечения при большом и малом эксцентриситете сжимающей силы. 112
33. Ригели. 113
34. Сбор нагрузок на фундамент здания. Расчет ленточных фундаментов. 113
35. Стальной каркас многоэтажного здания. 113
36. Стальные надшахтные копры. Назначение копров. 113
37. Сущность железобетона, его преимущества и недостатки. 116
38. Типизация и стандартизация в строительстве. 117
39. Угольные склады. 117
40. Эстакады и галереи. 117
ПЕРЕЧЕНЬ ВОПРОСОВ, ВЫНОСИМЫХ НА ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН ПО СПЕЦИАЛЬНОСТИ
130406 «ШАХТНОЕ И ПОДЗЕМНОЕ СТРОИТЕЛЬСТВО»
Механика подземных сооружений
1. Виды и область применения многослойной крепи.
2. Виды и типы железобетонной крепи (обделок). Область применения.
3. Гравитационное и тектоническое начальное поле напряжений. Величина и направление главных напряжений.
Величина и направление главных напряжений.
Породные массивы как объекты исследования в геомеханике имеют одну очень существенную особенность по сравнению с объектами, рассматриваемыми в механике вообще или в механике твёрдых деформируемых тел, в частности. До производства работ, т.е. ещё в своём изначальном состоянии они уже находятся в напряжённом состоянии, которое обычно называют естественным или начальным напряжённым состоянием.
Кроме того, ранее уже говорилось, что глубинные разломы и разрывы земной коры являются теми естественными швами, по которым на протяжении всей геологической истории Земли непрерывно происходили тектонические движения. Вполне очевидно, что если есть движения, то должны быть и силы, их вызывающие. Силы, обусловливающие тектонические движения, называют тектоническими.
Исходя из этих положений рассмотрим детальнее напряженное состояние земной коры в целом и верхней ее части, непосредственно являющейся объектом рассмотрения геомеханики.
При этом, в качестве исходного положения примем, что напряженное состояние земной коры в общем случае определяется действием в земной коре двух независимых силовых полей. Одно из них - гравитационное поле - в соответствии с законом всемирного тяготения Ньютона, другое - тектоническое поле - обусловлено неравномерным распределением в пространстве скоростей тектонических движений и скоростей деформаций земной коры, т. е. наличием градиента тектонических движений.
Гравитационное поле согласно закону всемирного тяготения обладает той особенностью, что оно не может быть отделено от материальных тел, его порождающих. Гравитационное поле Земли характеризуется ускорением свободного падения g, которое в общем случае является функцией расстояния r от центра Земли и плотности пород r. Однако в пределах не только верхней части, но и всей толщи земной коры и верхней мантии изменения параметра g столь незначительны, что во многих практических расчетах можно принимать g = 981 см/с2 » 1000 см/с2.
Тектоническое силовое поле отличается от гравитационного значительно большей сложностью. Оно связано с неравномерными распределениями в пространстве скоростей тектонических движений и деформаций земной коры.
Современные движения земной коры по виду и темпу подразделяют на несколько типов:
медленные или вековые движения отдельных участков земной коры, развивающиеся на протяжении, по крайней мере нескольких столетий;
сейсмические колебания - толчки различной силы и длительности, особенно интенсивные и частые в орогенических областях, но охватывающие и области платформ;
периодические колебания, связанные с гравитационным воздействием окружающих Землю космических тел, прежде всего Луны и Солнца (Лунно-Солнечные приливы);
сложные колебания поверхности Земли, связанные с сезонными изменениями метеорологических условий.
Поля тектонических напряжений в настоящее время связывают с первым из указанных типов движений. Современные медленные движения земной коры имеют вертикальные и горизонтальные составляющие, скорости которых различны и зависят, главным образом, от тектонического типа региона, строения и местоположения участка земной коры.
Данные непосредственных измерений и наблюдений в нашей стране и за рубежом свидетельствуют о приуроченности высоких горизонтальных напряжений к зонам тектонических поднятий земной коры, причём уровень горизонтальных напряжений тем выше, чем выше скорость поднятий.
Поскольку районам поднимающихся блоков литосферы свойственна повышенная сейсмичность, между степенью тектонической напряжённости и сейсмичностью существует тесная связь.
Вместе с тем, длительные поднятия участков земной коры связаны с процессами горообразования на дневной поверхности, поэтому в подавляющем большинстве случаев районы, где фиксируются высокие горизонтальные напряжения, характеризуются гористым рельефом.
Характерными признаками тектонически - напряжённых массивов являются специфические проявления горного давления в подземных выработках, дискование керна и азимутальные искривления стволов буровых скважин, а также аномально высокие величины напряжений по данным прямых натурных определений.
Горизонтальные тектонические силы проявляются не только в породах кристаллического фундамента, но и в осадочных толщах пород, начиная с глубин в несколько километров. Об этом свидетельствуют, в частности, сверхвысокие или аномально высокие пластовые давления, которые присущи нефтяным и газовым месторождениям, приуроченным к подвижным неотектонически активным зонам на суше и на шельфах морей во всем мире.
Таким образом, к настоящему времени установлены некоторые закономерности в распределении тектонических сил:
горизонтальные напряжения приурочены к районам восходящих движений блоков земной коры;
региональные поля напряжений соответствуют общим структурам месторождений;
наиболее высокие значения горизонтальных напряжений отмечаются у границ блоков вблизи геологических нарушений, в самих зонах геологических нарушений горизонтальные напряжения имеют сравнительно невысокие значения;
в элементах гористого рельефа высокие значения горизонтальных напряжений наблюдаются ниже дна долин; выше местных базисов эрозии, ближе к вершинам гор горизонтальные напряжения минимальны по величине; количественные различия достигают 3-5 раз;
горизонтальные напряжения выше в более упругих и монолитных породах; при увеличении модуля упругости от 2.104 до 8.104 МПа и скоростей продольных волн от 2.103 до 7.103 м/с тектонические напряжения увеличиваются от 10 до 60 МПа.
Вообще говоря, кроме этих двух полей в земной коре действуют ещё много других факторов, которые вносят свой вклад в формирование общего поля напряжений. К ним относятся условия генезиса массива, температурные поля, физические свойства горных пород, рельеф земной поверхности, действие подземных и наземных вод и газов, космические факторы. Однако все эти факторы можно рассматривать как искажающие основное гравитационно-тектоническое поле напряжений, хотя суммарный их вклад может быть очень велик и намного превосходить гравитационно-тектонические параметры поля напряжений.
Для решения задач геомеханики, учитывая проявление в одних случаях только гравитационных, а в других - как гравитационных, так и тектонических сил, удобно присваивать индексы 1, 2 и 3 в матрице тензора таким образом, чтобы главное напряжение в вертикальном направлении обозначалось s3, наибольшее по модулю главное горизонтальное напряжение (в случае действия тектонических сил) - s1, другое главное горизонтальное напряжение - s2. Направления действия главных нормальных напряжений называют главными осями напряжений.
Таким образом, главное напряжение в вертикальной плоскости s3 всегда определяется весом пород вышележащей толщи и в случае различных плотностей (объемных весов) покрывающих пород имеет вид:
s3 = Sgi hi
где gi - объемный вес i-го слоя пород; hi - мощность i-го слоя; Н - глубина рассматриваемой точки от дневной поверхности.
Если напряженное состояние массива пород определяется только действием гравитационных сил, то каждый элементарный объем под действием вертикального гравитационного напряжения s3 будет испытывать деформации сжатия в вертикальном (по оси Оz) и деформации растяжения в горизонтальных направлениях (по осям Ох и Оу). Однако последним препятствует реакция окружающих пород, в результате чего возникают горизонтальные сжимающие напряжения s1 и s2, численно равные n s1 = s2 = xgH =--------- gH
1- n
Здесь коэффициент x называется коэффициентом бокового давления или коэффициентом бокового отпора.. Этот коэффициент показывает, какую часть вертикальной нагрузки, действующей в рассматриваемой точке массива, составляют силы или напряжения, действующие в горизонтальной плоскости.
Главное напряжение s3, обусловленное действием гравитационных сил, может в отдельных случаях отклоняться от вертикали вследствие наклонного залегания отдельных слоев пород, их складчатости и различной мощности, а также при сложном рельефе поверхности или наличии пустот в недрах. Отклонения эти обычно не превышают нескольких градусов, в редких случаях достигая 10 - 15°.