
- •1. Основні складові системного програмного забезпечення.
- •2. Охарактеризуйте узагальнену структуру програмного забезпечення обчислювальних систем.
- •3. Типова структура системного програмного забезпечення.
- •4. Основні функції операційної системи.
- •5. Охарактеризуйте основні типи операційних систем.
- •1. За призначенням.
- •4. За способом побудови
- •6. Основні концепції побудови операційних систем.
- •7. Класифікація ос, за призначенням.
- •8. Класифікація ос, за режимом обробки задач.
- •9. Класифікація ос, за способами взаємодії із системами.
- •10. Класифікація ос, за способами побудови.
- •11. Охарактеризуйте підсистему керування ресурсами.
- •12. Охарактеризуйте підсистему керування введенням-виведенням.
- •13. Охарактеризуйте підсистему керування файлами та файлові системи.
- •14. Призначення та особливості ядра операційної системи
- •15. Основні функції ядра операційної системи.
- •16. Основні види архітектури операційних систем.
- •17. Операційні системи з монолітним ядром.
- •18. Багаторівневі операційні системи.
- •19. Операційні системи з мікроядром.
- •20. Концепція віртуальних машин в побудові операційних систем.
- •21. Засоби апаратної підтримки операційних систем
- •22. Інтерфейс прикладного програмування.
- •23. Варіанти реалізації інтерфейсу прикладного програмування
- •24. Особливості базової архітектури ос unix.
- •25. Призначення ядра ос Linux та його особливості
- •26. Концепція модулів ядра в ос Linux
- •27. Основні компоненти архітектури ос Windows
- •28. Призначення рівня абстрагування від апаратури в ос Windows
- •29. Основні компоненти підсистеми виконання в ос Windows
- •30. Об’єктна модель архітектури ос Windows
- •31. Розкрийте поняття „обчислювальний процес”.
- •32. Основні стани обчислювального процесу.
- •33. Умови переходу обчислювального процесу із стану в стан.
- •34. Призначення та основні функції блоку керування процесами (pcb).
- •35. Потоки („нитки”), призначення та застосування.
- •36. Поняття „переривання” та їх призначення.
- •37. Основні групи „переривань” та події, що їх викликають
- •38. Обробка „переривань” та механізм перемикання контексту „переривань”.
- •39. Механізми, що використовуються для планування процесорів
- •40. Інтервальний таймер, призначення та застосування у плануванні процесорів
- •41. Пріоритети, призначення та застосування у плануванні процесорів.
- •42. Планування процесорів за принципом fifo
- •43. Циклічне планування завантаження процесорів
- •44. Планування завантаження процесорів за принципом „найкоротше завдання-перший”.
- •45. Планування завантаження процесорів за „найменшим часом, що залишився”.
- •46. Планування процесорів із використанням багаторівневих черг зі зворотними зв’язками.
- •47. Витісняючі та невитісняючі алгоритми планування процесів.
- •48. Рівні планування процесів
- •49. Задачі, що вирішуються на кожному з рівнів планування процесів.
- •50. Основні вимоги до планування процесов.
- •51. Планування процесів з переключенням та без переключення.
- •52. Особливості процесів в ос unix.
- •53. Недоліки традиційної багато потоковості в Linux.
- •54. Особливості нової реалізації багато потоковості в Linux.
- •55. Особливості планування процесів у ос Windows
- •56. Створення потоків у ос Windows
- •57. Особливості планування потоків у ос Windows.
- •58. Планування потоків у ос Windows: пріоритети.
- •59. Планування потоків у ос Windows: вибір кванту часу.
- •60. Планування потоків у ос Windows: динамічна зміна пріоритету та кванту часу.
26. Концепція модулів ядра в ос Linux
Ядро UNIX – це не проста послідовна програма. Воно вміщує декілька важливих таблиць, які використовуються для координації взаємопов’язаних потоків, що повинні виконуватися. Це є приклад програми структура якої визначена даними, тому її вивчення слід починати з інформаційних таблиць. Більша частина роботи ядра – це пошук в таблицях і їх модифікація.
У довільний момент часу комп’ютер виконує або програму користувача (процес), або процес ОС. Деякі механізми ОС можуть виконувати запит на переключення з режиму користувача в режим ядра.
1. Системний годинник. Періодично формується переривання, тобто сигнал, що переключає комп’ютер на виконання спеціальної службової програми. Ця програма, обслуговування системного годинника, виконує переоцінку пріоритетів процесів і таким чином може відбутися зміна процесу, що виконується.
2. Системний виклик. Якщо у програми користувача виникає необхідність в послугах ОС, вона генерує системний виклик. Як наслідок – перехід з режиму користувача в режим ядра. Системні виклики, що виконують операції вводу/виводу, досить часто приводять до зупинки процесу, який ініціював виклик, на час передачі даних. Під час паузи може виконуватись інший процес користувача. Часто ініціюють роботу механізму розподілення часу.
3. Обслуговування периферійних пристроїв вводу/виводу. Для нормального продовження роботи процесу, що запустив операцію вводу/виводу, після закінчення передачі інформації виробляється переривання. Воно звичайно приводить до змін стану різних елементів, в таблицях і може ініціювати наступний обмін.
ОС UNIX підтримує у користувача дві ілюзії:
1. Файлова система розміщена в конкретному місці носія.
2. Процес “живе” своїм життям.
27. Основні компоненти архітектури ос Windows
Компоненти системи розподілені між чотирма рівнями (Ring 0 .. Ring 3), які пропонують різний ступінь системного захисту. Захист рівня Ring 3 виконується внутрішніми засобами архітектури процесора Intel. Найменш захищений рівень Ring 0 вміщує код найвищого рівня (файлова система і менеджер віртуальних машин).
28. Призначення рівня абстрагування від апаратури в ос Windows
Засоби абстрагування від устаткування, які взаємодіють із апаратним забезпеченням безпосередньо, звільняючи від реалізації такої взаємодії інші компоненти системи.
У Windows XP рівень абстрагування від устаткування називають HAL (hardware abstraction layer). Для різних апаратних конфігурацій фірма Microsoft або сторонні розробники можуть постачати різні реалізації HAL.
Хоча код HAL є дуже ефективним, його використання може знижувати продуктивність застосувань. Тому для мультимедіа використовують спеціальний пакет DirectX, який дає змогу прикладним програмам звертатися безпосередньо до апаратного забезпечення, обминаючи HAL та інші рівні системи.
29. Основні компоненти підсистеми виконання в ос Windows
Виконавча система (ВС) Windows XP (Windows XP Executive) — це набір компонентів, відповідальних за найважливіші служби ОС (керування пам’яттю, процесами і потоками, введенням/виведенням тощо).
Компонентами ВС є передусім базові засоби підтримки. Ці засоби використовують у всій системі.
Менеджер об’єктів — відповідає за розподіл ресурсів у системі, підтримуючи їхнє універсальне подання через об’єкти.
Засіб локального виклику процедур (LPC) — забезпечує механізм зв’язку між процесами і підсистемами на одному комп’ютері.
Інші компоненти ВС реалізують найважливіші служби Windows XP. Зупинимося на деяких із них.
Менеджер процесів і потоків — створює та завершує процеси і потоки, а також розподіляє для них ресурси.
Менеджер віртуальної пам’яті — реалізує керування пам'яттю в системі, насамперед підтримку віртуальної пам’яті.
Менеджер введення-виведення — керує периферійними пристроями, надаючи іншим компонентам апаратно/незалежні засоби введення/виведення. Цей менеджер реалізує єдиний інтерфейс для драйверів пристроїв.
Менеджер кешу — керує кешуванням для системи введення/виведення. Блоки диску, що часто використовуються тимчасово зберігаються в пам’яті, наступні операції введення-виведення звертаються до цієї пам’яті, внаслідок чого підвищується продуктивність.
Менеджер конфігурації — відповідає за підтримку роботи із системним реєстром (registry) — ієрархічно організованим сховищем інформації про налаштування системи і прикладних програм.
Довідковий монітор захисту — забезпечує політику безпеки на ізольованому комп’ютері, тобто захищає системні ресурси.