Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ДГМ 8-17.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
775.32 Кб
Скачать

8) Штатные измерительные средства систем диагностики и их характеристики.

Измерительный трансформатор — электрический трансформатор для контроля напряжениятока или фазы сигнала первичной цепи. Измерительный трансформатор рассчитывается таким образом, чтобы оказывать минимальное влияние на измеряемую (первичную) цепь; минимизировать искажения пропорции и фазы измеряемого сигнала в измерительной (вторичной) цепи.

Измерительные трансформаторы тока и напряжения предназначены для уменьшения первичных токов и напряжений до значений, наиболее удобных для подключения измерительных приборов, реле защиты, устройств автоматики. Применение измерительных трансформаторов обеспечивает безопасность работающих, так как цепи высшего и низшего напряжения разделены, а также позволяет унифицировать конструкцию приборов и реле.

Технические характеристики трансформаторов тока

Номинальный первичный и вторичный ток трансформаторов тока

Трансформаторы тока характеризуются номинальным первичным током Iном1 (стандартная шкала номинальных первичных токов содержит значения от 1 до 40000 А) и номинальным вторичным током Iном2, который принят равным 5 или 1 А. Отношение номинального первичного к номинальному вторичному току представляет собой коэффициент трансформации КТА= Iном1/ Iном2

Токовая погрешность трансформаторов тока

Трансформаторы тока характеризуются токовой погрешностью ∆I=(I2K-I1)*100/I1 (в процентах) и угловой погрешностью (в минутах). В зависимости от токовой погрешности измерительные трансформаторы тока разделены на пять классов точности: 0,2; 0,5; 1; 3; 10. Наименование класса точности соответствует предельной токовой погрешности трансформатора тока при первичном токе, равном 1—1,2 номинального. Для лабораторных измерений предназначены трансформаторы тока класса точности 0,2, для присоединений счетчиков электроэнергии — трансформаторы тока класса 0,5, для присоединения щитовых измерительных приборов -классов 1 и 3.

Нагрузка трансформаторов тока

Нагрузка трансформатора тока — это полное сопротивление внешней цепи Z2, выраженное в омах. Сопротивления r2 и х2 представляют собой сопротивление приборов, проводов и контактов. Нагрузку трансформатора можно также характеризовать кажущейся мощностью S2 В*А. Под номинальной нагрузкой трансформатора тока Z2ном понимают нагрузку, при которой погрешности не выходят за пределы, установленные для трансформаторов данного класса точности. Значение Z2ном дается в каталогах.

Электродинамическая стойкость трансформаторов тока

Электродинамическую стойкость трансформаторов тока характеризуют номинальным током динамической стойкости Iм.дин. или отношением kдин = Термическая стойкость определяется номинальным током термической стойкости Iт или отношением kт= Iт / I1ном и допустимым временем действия тока термической стойкости tт.

Конструкции трансформаторов тока

По конструкции различают трансформаторы тока катушечные, одновитковые (типа ТПОЛ), многовитковые с литой изоляцией (типа ТПЛ и ТЛМ). Трансформатор типа ТЛМ предназначен для КРУ и конструктивно совмещен с одним из штепсельных разъемов первичной цепи ячейки.

Для больших токов применяют трансформаторы типа ТШЛ и ТПШЛ, у которых роль первичной обмотки выполняет шина. Электродинамическая стойкость таких трансформаторов тока определяется стойкостью шины.

Для ОРУ выпускают трансформаторы типа ТФН в фарфоровом корпусе с бумажно-масляной изоляцией и каскадного типа ТРН. Для релейной защиты имеются специальные конструкции. На выводах масляных баковых выключателей и силовых трансформаторов напряжением 35 кВ и выше устанавливаются встроенные трансформаторы тока. Погрешность их при прочих равных условиях больше, чем у отдельно стоящих трансформаторов.

Технические характеристики измерительных трансформаторов напряжения

Номинальные первичное и вторичное напряжение измерительных трансформаторов напряжения

Трансформаторы напряжения характеризуются номинальными значениями первичного напряжения, вторичного напряжения (обычно 100 В или 100/ ), коэффициента трансформации К=U1ном/U2ном. В зависимости от погрешности различают следующие классы точности трансформаторов напряжения: 0,2;0,5; 1:3.

Нагрузка трансформаторов напряжения

Вторичная нагрузка трансформатора напряжения—это мощность внешней вторичной цепи. Под номинальной вторичной нагрузкой понимают наибольшую нагрузку, при которой погрешность не выходит за допустимые пределы, установленные для трансформаторов данного класса точности.

Конструкции трансформаторов напряжения

В установках напряжением до 18 кВ применяются трехфазные и однофазные трансформаторы, при более высоких напряжениях — только однофазные. При напряжениях до 20 кВ имеется большое число типов трансформаторов напряжения: сухие (НОС), масляные (НОМ, ЗНОМ. НТМИ, НТМК), с литой изоляцией (ЗНОЛ). Следует отличать однофазные двухобмоточные трансформаторы НОМ от однофазных трехобмоточных трансформаторов ЗНОМ. Трансформаторы типов ЗНОМ-15, -20 -24 и ЗНОЛ-06 устанавливаются в комплектных токопроводах мощных генераторов. В установках напряжением 110 кВ и выше применяют трансформаторы напряжения каскадного типа НКФ и емкостные делители напряжения НДЕ.

Схемы включения трансформаторов напряжения

В зависимости от назначения могут применяться разные схемы включения трансформаторов напряжения. Два однофазных трансформатора напряжения, соединенные в неполный треугольник, позволяют измерять два линейных напряжения. Целесообразна такая схема для подключения счетчиков и ваттметров. Для измерения линейных и фазных напряжений могут быть использованы три однофазных трансформатора (ЗНОМ, ЗНОЛ), соединенные по схеме «звезда — звезда», или трехфазный типа НТМИ. Так же соединяются в трехфазную группу однофазные трехобмоточные трансформаторы типа ЗНОМ и НКФ.

Присоединение расчетных счетчиков к трехфазным трансформаторам напряжения не рекомендуется, т.к. они имеют, обычно, несимметричную магнитную систему и увеличенную погрешность. Для этой цели желательно устанавливать группу из двух однофазных трансформаторов соединенных в неполный треугольник.

Трансформаторы напряжения выбирают по условиям Uуст ≤U1ном, S2≤ S2ном в намечаемом классе точности. За S2ном принимают мощность всех трех фаз однофазных трансформаторов напряжения, соединенных по схеме звезды, и удвоенную мощность однофазного трансформатора, включенного по, схеме неполного треугольника.

Основные нормируемые характеристики

  • Номинальный коэффициент трансформации

  • Класс точности

  • Диапазон рабочих частот

  • Угловая погрешность

  • Наибольший рабочий первичный ток трансформатора тока

  • Предельная мощность трансформатора напряжения

Трансформаторы постоянного тока

Принцип действия измерительного трансформатора постоянного тока аналогичен принципу действия магнитного усилителя. Такой прибор представляет собой ферромагнитный сердечник с двумя обмотками — постоянного и переменного тока, вспомогательный источник переменного тока и выпрямительное устройство. Подмагничивание сердечника с помощью входного постоянного тока ведёт к изменению магнитной проницаемости сердечника, что приводит, в свою очередь к изменению индуктивного сопротивления в обмотке переменного тока и изменению силы этого тока, выходной сигнал формируется с помощью нагрузочных резисторов в цепи переменного тока и выпрямителя.

9) Надежность в технике. Основные понятия. Термины и определения (ГОСТ 27.002‑89).

1. ОБЩИЕ ПОНЯТИЯ 1.1. Надежность Reliability, dependability Свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования. Примечание. Надежность является комплексным свойством, которое в зависимости от назначения объекта и условий его применения может включать безотказность, долговечность, ремонтопригодность и сохраняемость или определенные сочетания этих свойств 1.2. Безотказность Reliability, failure-free operation Свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки 1.3. Долговечность Durability, longevity Свойство объекта сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта 1.4. Ремонтопригодность Maintainability Свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта 1.5. Сохраняемость Storability Свойство объекта сохранять в заданных пределах значения параметров, характеризующих способности объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования 2. СОСТОЯНИЕ 2.1. Исправное состояние Исправность Good state Состояние объекта, при котором он соответствует всем требованиям нормативно-технической и (или) конструкторской (проектной) документации 2.2. Неисправное состояние Неисправность Fault, faulty state Состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации 2.3. Работоспособное состояние Работоспособность Up state Состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации 2.4. Неработоспособное состояние Неработоспособность Down state Состояние объекта, при котором значение хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации. Примечание. Для сложных объектов возможно деление их неработоспособных состояний. При этом из множества неработоспособных состояний выделяют частично неработоспособные состояния, при которых объект способен частично выполнять требуемые функции 2.5. Предельное состояние Limiting state Состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно 2.6. Критерий предельного состояния Limiting state criterion Признак или совокупность признаков предельного состояния объекта, установленные нормативно-технической и (или) конструкторской (проектной) документацией. Примечание. В зависимости от условий эксплуатации для одного и того же объекта могут быть установлены два и более критериев предельного состояния

3.2. Повреждение Damage Событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния 3.3. Отказ Failure Событие, заключающееся в нарушении работоспособного состояния объекта 3.4. Критерий отказа Failure criterion Признак или совокупность признаков нарушения работоспособного состояния объекта, установленные в нормативно-технической и (или) конструкторской (проектной) документации 3.5. Причина отказа Failure cause Явления, процессы, события и состояния, вызвавшие возникновение отказа объекта 3.6. Последствия отказа Failure effect Явления, процессы, события и состояния, обусловленные возникновением отказа объекта 3.7. Критичность отказа Failure criticality Совокупность признаков, характеризующих последствия отказа. Примечание. Классификация отказов по критичности (например по уровню прямых и косвенных потерь, связанных с наступлением отказа, или по трудоемкости восстановления после отказа) устанавливается нормативно-технической и (или) конструкторской (проектной) документацией по согласованию с заказчиком на основании технико-экономических соображений и соображений безопасности 3.8. Ресурсный отказ Marginal failure Отказ, в результате которого объект достигает предельного состояния 3.9. Независимый отказ Primary failure Отказ, не обусловленный другими отказами 3.10. Зависимый отказ Secondary failure Отказ, обусловленный другими отказами 3.11. Внезапный отказ Sudden failure Отказ, характеризующийся скачкообразным изменением значений одного или нескольких параметров объекта 3.12. Постепенный отказ Gradual failure Отказ, возникающий в результате постепенного изменения значений одного или нескольких параметров объекта 3.13. Сбой Interruption Самоустраняющийся отказ или однократный отказ, устраняемый незначительным вмешательством оператора 3.14. Перемежающийся отказ Intermittent failure Многократно возникающий самоустраняющийся отказ одного и того же характера 3.15. Явный отказ Explicit failure Отказ, обнаруживаемый визуально ила штатными методами и средствами контроля и диагностирования при подготовке объекта к применению или в процессе его применения по назначению 3.16. Скрытый отказ Latent failure Отказ, не обнаруживаемый визуально или штатными методами и средствами контроля и диагностирования, но выявляемый при проведении технического обслуживания или специальными методами диагностики 3.17. Конструктивный отказ Design failure Отказ, возникший по причине, связанной с несовершенством или нарушением установленных правил и (или) норм проектирования и конструирования 3.18. Производственный отказ Manufacturing failure Отказ, возникший по причине, связанной с несовершенством или нарушением установленного процесса изготовления или ремонта, выполняемого на ремонтном предприятии 3.19. Эксплуатационный отказ Misuse failure, mishandling failure Отказ, возникший по причине, связанной с нарушением установленных правил и (или) условий эксплуатации 3.20. Деградационный отказ Wear-out failure, ageing failure Отказ, обусловленный естественными процессами старения, изнашивания, коррозии и усталости при соблюдении всех установленных правил и (или) норм проектирования, изготовления в эксплуатации

4.1. Наработка Operating time Продолжительность или объем работы объекта. Примечание. Наработка может быть как непрерывной величиной (продолжительность работы в часах, километраж пробега и т. п.), так и целочисленной величиной (число рабочих циклов, запусков и т. п.). 4.2. Наработка до отказа Operating time to failure Наработка объекта от начала эксплуатации до возникновения первого отказа 4.3. Наработка между отказами Operating time between failures Наработка объекта от окончания восстановления его работоспособного состояния после отказа до возникновения следующего отказа 4.4. Время восстановления Restoration time Продолжительность восстановления работоспособного состояния объекта 4.5. Ресурс Useful life, life Суммарная наработка объекта от начала его эксплуатации или ее возобновления после ремонта до перехода в предельное состояние 4.6. Срок службы Useful lifetime, lifetime Календарная продолжительность эксплуатации от начала эксплуатации объекта или ее возобновления после ремонта до перехода в предельное состояние 4.7. Срок сохраняемости Storability time, shelf life Календарная продолжительность хранения и (или) транспортирования объекта, в течение которой сохраняются в заданных пределах значения параметров, характеризующих способность объекта выполнять заданные функции. Примечание. По истечении срока сохраняемости объект должен соответствовать требованиям безотказности, долговечности и ремонтопригодности, установленным нормативно-технической документацией на объект 4.8. Остаточный ресурс Residual life Суммарная наработка объекта от момента контроля его технического состояния до перехода в предельное состояние. Примечание. Аналогично вводятся понятия остаточной наработки до отказа, остаточного срока службы и остаточного срока хранения 4.9. Назначенный ресурс Assigned operating time Суммарная наработка, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния 4.10. Назначенный срок службы Assigned lifetime Календарная продолжительность эксплуатации, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния 4.11. Назначенный срок хранения Assigned storage time Календарная продолжительность хранения, при достижении которой хранение объекта должно быть прекращено независимо от его технического состояния. Примечание к терминам 4.9.-4.11. По истечении назначенного ресурса (срока службы, срока хранения) объект должен быть изъят из эксплуатации и должно быть принято решение, предусмотренное соответствующей нормативно-технической документацией - направление в ремонт, списание, уничтожение, проверка и установление нового назначенного срока и т. д.

и т. д. там 10 пунктов в госте

10) Методы расчёта надежности элементов электроэнергетического оборудования.

Расчёт надёжности — это процедура определения значений показателей надежности объекта с использованием методов, основанных на их вычислении по справочным данным о надежности элементов объекта, по данным о надежности объектов-аналогов, данным о свойствах материалов и другой информации, имеющейся к моменту расчета.