Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Выборочное наблюдение.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
47.76 Кб
Скачать

Тема 6. Выборочное наблюдение

Статистическая совокупность- объект статистического изучении, состоящий из качественно однородных единиц, но отличающихся по каким-то другим признакам.

Генеральная совокупность - совокупность единиц, подлежащая изучению, ее численность обозначается N.

Выборочная совокупность - часть единиц генеральной совокупности, отобранная в случайном порядке, ее численность обозначается n. Выборочное наблюдение - не сплошное наблюдение, при котором обследованию подвергается определенная часть единиц изучаемой совокупности, отобранная в случайном порядке.

Малая выборкавыборка наблюдения численность единиц которого не превышает 30.

Преимущества выборочного наблюдения:

1) при обследовании слишком больших совокупностей, когда сплошное наблюдение требует огромных затрат труда и средств;

2) при необходимости получения информации в сжатые сроки;

3) при невозможности сплошного наблюдения.

Основные принципы выборочного наблюдения

1) обеспечение случайности - заключается в том, что при отборе каждой из единиц изучаемой совокупности обеспечивается равная возможность попасть в выборку

2) обеспечение достаточного числа отобранных единиц.

Репрезентативность выборки - представительность отобранной из всей изучаемой совокупности части в отношении тех признаков, которые изучаются или оказывают влияние на формирование обобщающих характеристик.

Суть выборочного метода - получение первичных данных наблюдением выборки, анализом и их распространением на всю генеральную совокупность, с целью получения достоверной информации, об исследуемом явлении.

Характеристики генеральной совокупности - средняя, дисперсия, доля - называются генеральными и соответственно обозначаются х, , р, где р - доля, отношение числа М единиц, обладающих данным признаком, ко всей численности генеральной совокупности, т. е. р =М/N.

Обобщающие характеристики в выборочной совокупности называются выборочными и обозначаются соответственно x, , , где - частость, отношение числа единиц, обладающих данным признаком, в выборочной совокупности л, т.е. = m/n.

Разность x - х= x, называется ошибкой репрезентативности выборочной средней, соответственно разность - р = называется ошибкой частости и разность - = - ошибкой дисперсии.

Ошибка репрезентативности - расхождение между выборочной характеристикой и предполагаемой характеристикой генеральной совокупности.

Систематические ошибки репрезентативности - ошибки, возникающие в связи с особенностями принятой системы отбора и обработки данных наблюдений или в связи с нарушением установленных правил отбора.

Случайные ошибки репрезентативности ошибки, возникающие в результате случайных различий между единицами, попавшими в выборку, и единицами генеральной совокупности.

Стандартная ошибка выборки:

Предельная ошибка выборки: (t-коэффициент доверия).

Величина случайной, стандартной и предельной ошибки зависит:

1) от принятого способа формирования выборочной совокупности;

2) от объема выборки;

3) от степени колеблемости изучаемого признака в генеральной совокупности.

Способ отбора - порядок отбора единиц из генеральной совокупности. Различают два вида:

1) повторный;

2) бесповторный.

Повторный отбор - отобранную единицу после обследования возвращают в генеральную совокупность, и она снова участвует в отборе. Численность генеральной совокупности при этом все время остается неизменной, а вероятность попадания каждой единицы в выборку постоянной.

Бесповторный отбор - отобранные однажды единицы в генеральную совокупность не возвращаются. Вероятность попадания отдельных единиц в выборку увеличивается по мере производства отбора.

В зависимости от методики формирования выборочной совокупности различают следующие