- •1.Классификация трубопроводов по характеристике перекачиваемых продуктов
- •1.Технологии кр тр-да. Строительство лупинга.
- •2.Классификация способов защиты от коррозии.
- •3.Гидравлический расчет магистральных нефтепроводов. Подбор и расстановка насосных агрегатов по трассе нефтепроводов.
- •1.Трубы для магистральных трубопроводов.
- •3.Подводные переходы и их ремонт при малом зеркале рек.
- •1.Поперечное сечение полосы отвода при кр мт.
- •1 Классы и категории магистральных трубопроводов
- •2.Функции заказчика, подрядчика, субподрядчика.
- •3.Конструктивные схемы укладки трубопроводов.
- •1.Конструктивные схемы укладки трубопроводов.
- •3. Типы анкерных устройств для закрепления трубопроводов
- •2.Проект организации строительства.
- •2.История развития трубопроводного транспорта нефти и газа в России.
- •2.Надземные сооружения объектов нефтегазового комплекса.
- •3.Земляные работы при ремонте трубопроводов.
- •3.Состав и технологическая схема кс.
- •2.Протекторная защита.
- •3.Подсчет объемов земляных работ при разработке траншеи.
- •2.Устройство переездов через действующие трубопроводы.
- •1.Исполнительная документация
- •2.Воздействия на окружающую среду в период строительства и ремонта трубопроводов.
- •1.Устройство вдольтрассового проезда и лежневых дорог.
- •2.Протекторная защита.
- •3.Сооружение нефтяных трубопроводов через водные преграды.
- •2.Основные физико-химические свойства нефтяного и природного газов.
- •3.Газгольдеры.
- •1. Расчет толщины стенки трубопровода.
- •2. Закрепление трубопроводов в условиях вечномерзлых грунтах
- •1.Перечень земляных работ при строительстве трубопроводов.
- •2..Характеристика капремонта трубопроводов и его виды
- •3.Надземные хранилища нефти. Рвс. Устройство и принцип их действия. Пбэ.
- •2.Ппр и его состав.
- •2.Гидравлический расчет магистральных нефтепроводов. Подбор и расстановка насосных агрегатов по трассе нефтепроводов.
- •3.Охрана ос при эксплуатации мн.
- •1.Подсчет объемов земляных работ при разработке траншеи.
- •2.Контроль качества и приемки земляных работ.
- •3.Виды защиты трубопроводов и их состав.
2.Гидравлический расчет магистральных нефтепроводов. Подбор и расстановка насосных агрегатов по трассе нефтепроводов.
Гидравлический расчет магистрального нефтепровода предусматривает решение следующих основных задач: 1) определение оптимальных параметров нефтепровода (диаметр, толщина стенки трубопровода, давление на НПС, число НПС; 2) расстановка станций по трассе нефтепровода; 3) расчет эксплуатационных режимов нефтепровода.
Для определения оптимальных параметров нефтепровода обычно задаются несколькими значениями его диаметра, после чего выполняются гидравлический и механический расчеты. Результатом этих расчетов является определение числа ПС и толщины стенки трубы для каждого конкурирующего варианта. Наилучший вариант находят из сравнительной оценки эффективности инвестиций, т. е. экономическим расчетом.
Расчет эксплуатационных режимов заключается в определении производительности нефтепровода, давления на выходе станций и подпоров перед ними при условиях перекачки, отличающихся от проектных.
Для каждого значения принятых вариантов стандартных диаметров вычисляется толщина стенки трубопровода
где P – рабочее давление в трубопроводе, МПа;
np – коэффициент надежности по нагрузке (np=1,15);
R1 – расчетное сопротивление металла трубы, МПа
в – временное сопротивление стали на разрыв, МПа;
mу – коэффициент условий работы;
k1 – коэффициент надежности по материалу;
kн – коэффициент надежности по назначению;
Вычисленное значение толщины стенки трубопровода о округляется в большую сторону до стандартной величины из рассматриваемого сортамента труб.
Внутренний диаметр трубопровода определяется по формуле D = Dн – 2.
Гидравлический расчет нефтепровода выполняется для каждого конкурирующего варианта. Результатом гидравлического расчета является определение потерь напора в трубопроводе.
При перекачке нефти по магистральному нефтепроводу напор, развиваемый насосами перекачивающих станций, расходуется на трение жидкости о стенку трубы h, преодоление местных сопротивлений hмс, статического сопротивления из-за разности геодезических (нивелирных) отметок z, а также создания требуемого остаточного напора в конце трубопровода hост.
Полные потери напора в трубопроводе составят
H = h + hмс + z + hост.
Необходимое число НПС определяется из уравнения баланса напоров:
, где Н- суммарные потери в трубопроводе, Nэ - число эксплуатационных участков, на границе которых расположены перекачивающие станции с резервуарными парками (L=400-800 км); hn - напор, развиваемый подпорным насосам, hкп- остаточный напор, который передается на конечный пункт нефтепровода для преодоления сопротивления технологических коммуникаций заполнения резервуаров. Нст- суммарный напор всех насосов.
Расстановка перекачивающих станций выполняется графически на сжатом профиле трассы. Метод размещения станций по трассе впервые был предложен В. Г. Шуховым и носит его имя. Рассмотрим реализацию этого метода для случая округления числа перекачивающих станций в большую сторону на примере одного эксплуатационного участка. В работе находятся три перекачивающие станции, оборудованные однотипными магистральными насосами и создающие одинаковые напоры HСТ1= HСТ1= HСТ1. На ГПС установлены подпорные насосы, создающие подпор hП. В конце трубопровода (эксплуатационного участка) обеспечивается остаточный напор hОСТ .
Гидравлический расчет МГ. Подбор и расстановка ГПА по трассе МГ.
Цель расчета:
1. Выбор рабочего давления, определение числа КС и расстояния между станциями.
2. Уточненный тепловой и гидравлический расчет участка газопровода между двумя компрессорными станциями.
3. Выбор типа ГПА и расчет режима работы КС.
Исходные данные:
Протяженность газопровода Lобщ, км
Наружный диаметр DH и толщина стенки трубы , мм
Объем транспортируемого газа Qг, млрд. м3/год
Температура окружающей среды t0 , С
Температура воздуха tвозд, С
Состав транспортируемого газа, % объемные
