Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИМИТАЦ_МОДЕЛИРОВАНИЕ_лекции_last.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
4.6 Mб
Скачать

3.1. Мысленное моделирование может быть реализовано в виде наглядного, символического и математического.

3.1.1.

3.1.2.

3.1.3

Когда результаты, полученные при воспроизведении на имитационной модели процесса функционирования системы S, являются реализациями случайных величин и функций, тогда для нахождения характеристик процесса требуется его многократное воспроизведение с последующей статистической обработкой информации и целесообразно в качестве метода машинной реализации имитационной модели использовать метод статистического моделирования. Первоначально был разработан метод статистических испытаний, представляющий собой численный метод, который применялся для моделирования случайных величин и функций, вероятностные характеристики которых совпадали с решениями аналитических задач (такая процедура получила название метода Монте-Карло). Затем этот прием стали применять и для машинной имитации с целью исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, т. е. появился метод статистического моделирования.

Таким образом, методом статистического моделирования будем в дальнейшем называть метод машинной реализации имитационной модели, а методом статистических испытаний (Монте-Карло) — численный метод решения аналитической задачи.

Метод имитационного моделирования позволяет решать задачи анализа больших систем S, включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных параметров системы.

3.2. Рассмотрим разновидности реального моделирования.

Реальное

4. С точки зрения математического описания объекта и в зависимости от его характера модели можно разделить на модели аналоговые (непрерывные), цифровые (дискретные) и аналого-цифровые (комбинированные).

модель, которая описывается уравнениями, связывающими непрерывные величины.

модель, которая может быть описана уравнениями, связывающими непрерывные и дискретные величины.

модель, которая описывается уравнениями, связывающими дискретные величины, представленные в цифровом виде.

Лекция №3.

Часть 2. Математические схемы моделирования систем

2.1. Основные подходы к построению мм систем.

Исходной информацией при построении моделей функционирования систем служат данные о назначении и условиях работы исследуемой (проектируемой) системы S. Эта информация определяет основную цель моделирования, требования к модели, уровень абстрагирования, выбор математической схемы моделирования.

Понятие математическая схема позволяет рассматривать математику не как метод расчёта, а как метод мышления, средства формулирования понятий, что является наиболее важным при переходе от словесного описания к формализованному представлению процесса её функционирования в виде некоторой модели.

При пользовании мат. схемой в первую очередь исследователя системы должен интересовать вопрос об адекватности отображения в виде конкретных схем реальных процессов в исследуемой системе, а не возможность получения ответа (результата решения) на конкретный вопрос исследования.

Например, представление процесса функционирования ИВС коллективного пользования в виде сети схем массового обслуживания даёт возможность хорошо описать процессы, происходящие в системе, но при сложных законах входящих потоков и потоков обслуживания не даёт возможности получения результатов в явном виде.

Математическую схему можно определить как звено при переходе от содержательного к формализованному описанию процесса функционирования системы с учётом воздействия внешней среды. Т.е. имеет место цепочка: описательная модель — математическая схема — имитационная модель.

Формальная модель объекта

Каждая конкретная система S характеризуется набором свойств, т.е. величинами, отражающими поведение моделируемого объекта (реальной системы), при этом учитываются условия её функционирования во взаимодействии с внешней средой (системой) Е.

При построении модели системы S необходимо решить вопрос о её полноте. Полнота моделирования регулируется, в основном, выбором границ "Система S — среда Е". Также должна быть решена задача упрощения модели, которая помогает выделить основные свойства системы, отбросив второстепенные в плане цели моделирования.

Модель объекта моделирования, т.е. системы S можно представить в виде множества величин, описывающих процесс функционирования реальной системы и образующих в общем случае следующие подмножества:

- совокупность Х - входных воздействий на S хiХ, i=1…nx;

- совокупность воздействий внешней среды vlV, l=1…nv;

- совокупность внутренних (собственных) параметров системы hkH, k=1…nh;

- совокупность выходных характеристик системы yjY, j=1…ny.

В перечисленных множествах можно выделить управляемые и неуправляемые величины. В общем случае X, V, H, Y не пересекаемые множества, содержат как детерминированные, так и стохастические составляющие. Входные воздействия, воздействия внешней среды и внутренние параметры системы являются независимыми (экзогенными) переменными,

Выходные характеристики - зависимые переменные (эндогенные) .

Процесс функционирования S описывается оператором FS:

(1)

- выходная траектория. FS - закон функционирования S. FS может быть функция, функционал, логические условия, алгоритм, таблица или словесное описание правил.

Алгоритм функционирования AS — метод получения выходных характеристик с учётом входных воздействий

Очевидно один и тот же FS может быть реализован различными способами, т.е. с помощью множества различных AS.

Соотношение (1) является математическим описанием поведения объекта S моделирования во времени t, т.е. отражает его динамические свойства. (1) - это динамическая модель системы S.

Состояния системы S характеризуются векторами zk. Совокупность всех возможных значений состояний { } называется пространством состояний объекта моделирования Z, причём zkZ.

Состояние системы S в интервале времени t0<tTl полностью определяется начальными условиями , где входными воздействиями , внутренними параметрами и воздействиями внешней среды , которые имели место за промежуток времени t* - t0 c помощью 2-х векторных уравнений:

; (3)

. (4)

иначе: . (5)

Время в мод. S может рассматриваться на интервале моделирования (t0, T) как непрерывное, так и дискретное, т.е. квантованное на отрезке длиной t.

Таким образом, под моделью объекта понимаем конечное множество переменных { } вместе с математическими связями между ними и характеристиками .

Моделирование называется детерминированным, если операторы F, Ф детерминированные, т.е. для конкретного входа выход детерминированный. Детерминированное моделирование - частный случай стохастического моделирования. В практике моделирование объектов в области системного анализа на первичных этапах исследования рациональнее использовать типовые математические схемы: диф. уравнения, конечные и вероятностные автоматы, СМО и т.д.

Типовые схемы:

  1. Дифференциальные и разностные уравнения

  2. Конечные вероятностные автоматы

  3. Стохастические дифф. ур.

  4. Системы МО

  5. Сети Петри и т.п.

  6. Типовые агрегированные схемы

Aгрегативные модели (системы) позволяют описать широкий круг объектов исследования с отображением системного характера этих объектов. Именно при агрегативном описании сложный объект расчленяется на конечное число частей (подсистем), сохраняя при этом связи, обеспечивая взаимодействие частей.

Подходы в типовых схемах:

  1. Непрерывный детерминированный

  2. Дискретный детерминированный

  3. Дискретный стохастический

  4. Непрерывный стохастический

  5. Обобщенный

  6. Универсальный