Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы Сульдин Аппаратура.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
711.32 Кб
Скачать

2. Светоизлучающий диод. Принцип работы

Светодиод или светоизлучающий диод (СД, СИД, LED англ. Light-emitting diode) -- полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока.

Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава, использованного в нем полупроводника.

Считается, что первый светодиод, излучающий свет в видимом диапазоне спектра, был изготовлен в 1962 году в Университете Иллинойса группой, которой руководил Ник Холоньяк.

Как и в любом полупроводниковом диоде, в светодиоде имеется p-n переход. При пропускании электрического тока в прямом направлении, носители заряда -- электроны и дырки -- рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Не всякие полупроводниковые материалы эффективно испускают свет при рекомбинации. Лучшие излучатели относятся к прямозонным полупроводникам (то есть таким, в которых разрешены прямые оптические переходы зона-зона), типа AIIIBV (например, GaAs или InP) и AIIBVI (например, ZnSe или CdTe).

Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS). Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают.

Впрочем, в связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.

17

1).Мультиплексорам DWDM (в отличии от более традиционных WDM) присущи две отличи­тельные черты:

использование только одного окна прозрачности 1550 нм, в пределах области усиления

EDFA (1530-1560 нм); малые расстояние ДА, между мультиплексными каналами (3,2 / 1,6 / 0,8 или 0,4 нм).

Кроме этого, поскольку мультиплексоры DWDM рассчитаны на работу с большим чис­лом каналов (до 32-х и более), то наряду с устройствами DWDM, в которых мультиплексиру­ются (демультиплексируются) одновременно все каналы, допускаются также новые устройст­ва, не имеющие аналогов в системах WDM и работающие в режиме добавления или вывода одного и более каналов в/из основного мультиплексного потока, представленного ббльши*. числом других каналов.^ Так как выходные порты/полюса демультиплексора закреплены за определенными длинами волн, говорят, что такое устройство осуществляет пассивную маршру­тизацию по длинам волн. Из-за малых расстояний между каналами и необходимости работы с большим числом каналов одновременно, изготовление мультиплексоров DWDM требует зна­чительно большей прецизионности по сравнению с WDM мультиплексорами (использующими обычно окна прозрачности 1310 нм, 1550 нм или дополнительно область длин волн в окрест­ности 1650 нм). Также важно обеспечить высокие характеристики по ближним (коэффициент направленности) и дальним (изоляция) переходным помехам на полюсах DWDM устройства. Все это приводит к более высокой стоимости DWDM устройств по сравнению WDM.

Типовая схема DWDM мультиплексора с зеркальным отражающим элементом показана на рис1. Рассмотрим его работу в режиме демультиплексирования. Приходящий мульти­плексный сигнал попадает на входной порт. Затем этот сигнал проходит через волновод- пластину и распределяется по множеству волноводов, представляющих дифракционную структуру AWG (arrayed waveguide grating). По-прежнему сигнал в каждом из волноводов ос­тается мультиплексным, а каждый канал 1}Х2,... ) остается представленным во всех волно­водах. Далее происходит отражение сигналов от зеркальной поверхности, и, в итоге, свето­вые потоки вновь собираются в волноводе-пластине, где происходит их фокусировка и ин­терференция - образуются пространственно разнесенные интерференционные максимумы интенсивности, соответствующие разным каналам. Геометрия волновода-пластины, в частно­сти, расположение выходных полюсов, и длины волноводов структуры AWG рассчитываются таким образом, чтобы интерференционные максимумы совпадали с выходными полюсами. Мультиплексирование происходит обратным путем.

Другой способ построения мультиплексора базируется не на одной, а на паре волново- дов-пластин (рис. 8.1 б). Принцип действия такого устройства аналогичен предыдущему слу­чаю за исключением того, что здесь для фокусировки и интерференции используется допол­нительная пластина.

D WDM мультиплексоры, являясь чисто пассивными устройствами, вносят большое зату­хание в сигнал. Например, потери для устройства (рис. 8.1 а), работающего в режиме де­мультиплексирования составляют 10-12 дБ, при дальних переходных помехах <-20 дБ, и по­луширине спектра сигнал 1 нм, (по материалам Oki Electric Industry [5]). Из-за больших потерь часто возникает необходимость установления оптического усилителя перед и/или после DWDM мультиплексора. на DWDM можно организовать большее число каналов, еще одно преимущество перед CWDM заключается в том, что возможно усиление сигнала при помощи недорогих и эффективных эрбиевых усилителей (Erbium Doped Fiber Amplifier, EDFA), тем самым можно организовать протяженные оптические линии с большой пропускной способностью без использования промежуточной электрической регенерации

2).Полупроводниковые лазерные усилители (ППЛУ). Основу ППЛУ составляет актив­ная среда, аналогичная той, которая используется в полупроводниковых лазерах [11, 12]. В ППЛУ отсутствуют зеркальные резонаторы, характерные для полупроводниковых лазеров. Для уменьшения френелевского отражения с обеих сторон активной среды наносится специаль­ное покрытие толщиной Х/4 с согласованным показателем преломления, рис.

Полупроводниковые лазерные усилители не получили столь широкого распространения, как усилители на примесном волокне. Дело в том, что ППЛУ свойственны два существенных недостатка.

Светоизлучающий активный слой имеет поперечный размер несколько микрон, но тол­щину з пределах одного микрона, что много меньше, чем диаметр светонесущей части опти­ческого волокна (~ 9 мкм - для одномодового волокна). Вследствие этого большая часть све­тового потока из входящего волокна не попадает в активную область и теряется, что умень­шает КПД усилителя. Увеличить КПД можно, поставив между входящим волокном и активной средой линзу, но это приводит к усложнению конструкции.Второй недостаток имеет более тонкую природу. Дело в том, что выход (коэффициент усиления) ППЛУ зависит от направления поляризации и может отличаться на 4-8 дБ для двух ортогональных поляризаций. Это нежелательно, так как в стандартном одномодовом волокне поляризация распространяемого светового сигнала не контролируется. Мощность светового потока данной поляризации может флуктуировать вдоль длины. Отсюда вытекает, что коэф­фициент усиления ППЛУ зависит от неконтролируемого фактора. Можно уменьшить эту зави­симость от поляризации путем установки двух лазеров - возможно как параллельное (требу­ется пара разветвителей), так и последовательное их подключение. Но это снова приводит к усложнению конструкции и росту стоимости.

Два приведенных недостатка нивелируются в тех случаях, когда ППЛУ интегрирован с другими оптическими устройствами. И именно так преимущественно используются ППЛУ. Од­на из возможностей - производство совмещенного светоизлучающего лазерного диода, не­посредственно на выходе которого устанавливается ППЛУ.

Н а рис. 4.14 показана еще одна реализация источника мультиплексного многоволнового излучения, в котором ППЛУ используются в качестве широкополосного усилителя. Несколько узкополосных полупроводниковых лазеров на разных длинах волн генерируют световые сигналы, которые мультиплексируются и размножаются посредством оптического разветвителя. ППЛУ устанавливаются на конечном участке, чтобы усилить ослабленные после разветвления оптические мультиплексные сигналы

24

1) Режим работы лазера, при котором лазерное излучение содержит как продольные,

так и поперечные типы колебаний, называют многомодовым

Принцип действия

Физической основой работы лазера служит явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайное направление распространения, поляризацию и фазу.

Гелий-неоновый лазер. Светящийся луч в центре — это не собственно лазерный луч, а электрический разряд, порождающий свечение, подобно тому, как это происходит в неоновых лампах. Луч проецируется на экран справа в виде светящейся красной точки.

Вероятность того, что случайный фотон вызовет индуцированное излучение возбуждённого атома в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённым состоянии. Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых (так называемая инверсия населённостей). В состоянии термодинамического равновесия это условие не выполняются, поэтому используются различные системы накачки активной среды лазера (оптические, электрические, химические и др.)

Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет из себя два зеркала, одно из которых полупрозрачное — через него луч лазера частично выходит из резонатора. Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы (вращающиеся призмы, ячейки Керра и др.) для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности (так называемые гигантские импульсы. Этот режим работы лазера называют режимом модулированной добротности.

Генерируемое лазером излучение является монохроматическим (одной или дискретного набора длин волн), поскольку вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии, а, соответственно, и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами[12]. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости. Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляроиды, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера.