Оптические разветвители
Одним из наиболее важных устройств, относящихся к пассивным компонентам ВОЛС, является оптический разветвитель (coupler, другое название splitter). Разветвители широко используются при построении распределенных волоконно-коаксиальных сетей кабельного телевидения, а также в межгосударственных проектах полностью оптических сетей (all-optical networks). В обоих случаях сети без использования разветвителей были бы значительно дороже.
Оптический разветвитель представляет собой в общем случае многополюсное устройство, в котором излучение, подаваемое на часть входных оптических полюсов, распределяется между его остальными оптическими полюсами .
Различают направленные и двунаправленные разветвители, а также разветвители, чувствительные к длине волны и нечувствительные. В двунаправленном разветвителе каждый полюс может работать или на прием сигнала, или на передачу, или осуществлять прием и передачу одновременно, так что группы приемных и передающих полюсов могут меняться местами в функциональном смысле.
Основные категории оптических разветвителей следующие; древовидный разветвитель; рвездообразный разветвитель; ответвитель.
Древовидный разветвитель (tree coupler)
Древовидный разветвитель осуществляет расщепление одного входного оптического сигнала на несколько выходных, или выполняет обратную функцию -объединение нескольких сигналов в один выходной (рис. 3.12 а). Обычно древовидные разветвители распределяют мощность в равной степени между всеми выходными полюсами. Конфигурация полюсов обозначается как n х m, где n — число входных полюсов (для древовидного разветвителя n = 1), а m — число выходных полюсов, когда устройство работает в режиме расщепления. В поставляемых в настоящее время моделях количество выходных портов может находиться в пределах от 2 до 32. Большинство древовидных разветвителей полностью двунаправленные. Поэтому разветвитель может выполнять функцию объединения сигналов. Передаточные параметры для разных выходных полюсов разветвителя стремятся делать более близкими друг другу.
Звездообразный разветвитель (star coupler)
Звездообразный разветвитель обычно имеет одинаковое число входных и выходных полюсов. Оптический сигнал приходит на один из п входных полюсов и в равной степени распределяется между п выходными полюсами. Большее распространение получили звездообразные разветвители 2х2 и 4х4. Во избежании путаницы по входным и выходным полюсам, принято обозначать входные полюса латинскими буквами, а выходные полюса — цифрами, рис. 3.12 б. Звездообразные разветвители распределяют мощность в равной степени между всеми выходными полюсами.
Ответвитель (tap)
Ответвитель — это обобщение древовидного разветвителя, когда выходная мощность распределяется необязательно в равной пропорции между выходными полюсами, рис.3.12 в. Конфигурации ответвителей бывают 1х2, 1х3, 1х4, 1х5, 1х6, 1х8, 1х16, 1х32. Некоторая доля (меньше 50%) выходной мощности идет на канал (каналы) ответвления, в то время как большая часть остается в магистральном канале. Выходные полюса нумеруются в порядке убывания мощности.
Рис. 3.12. Типы разветвителей: а) древовидный разветвитель; б) звездообразный разветвитель; в) Ответвитель
№13
1)
Чтобы
передать данные через оптические каналы,
сигналы должны быть преобразованы из
электрического вида в оптический,
переданы по линии связи и, затем в
приемнике преобразованы обратно в
электрический вид. Эти преобразования
происходят в приемопередатчиках, которые
содержат электронные блоки наряду с
оптическими компонентами.
№14
1)Принцип работы
При подаче сильного обратного смещения (близкого к напряжению лавинного пробоя, обычно порядка нескольких сотен вольт для кремниевых приборов), происходит усиление фототока (примерно в 100 раз) за счёт ударной ионизации (лавинного умножения) генерированных светом носителей заряда. Суть процесса в том, что энергия образовавшегося под действием света электрона увеличивается под действием внешнего приложенного поля и может превысить порог ионизации вещества, так что столкновение такого «горячего» электрона с электроном из валентной зоны может привести к возникновению новой электрон-дырочной пары, носители заряда которой также будут ускоряться полем и могут стать причиной образования всё новых и новых носителей заряда.
Зависимость тока (I) и коэффициента умножения (M)от обратного напряжения (U) на ЛФД.
Существует ряд формул для коэффициента лавинного умножения (M), довольно информативной является следующая:
где
L — длина области пространственного
заряда, а
—
коэффициент ударной ионизации для
электронов (и дырок). Этот коэффициент
сильно зависит от приложенного напряжения,
температуры и профиля легирования.
Отсюда возникает требование хорошей
стабилизации питающего напряжения и
температуры, либо учёт температуры
задающей напряжение схемой.
Ещё одна эмпирическая формула показывает сильную зависимость коэффициента лавинного умножения (M) от приложенного обратного напряжения[1] :
где
—
напряжение пробоя. Показатель
степени n принимает
значения от 2 до 6, в зависимости от
характеристик материала и
структуры p-n-перехода.
Исходя из того, что в общем случае с возрастанием обратного напряжения растёт и коэффициент усиления, существует ряд технологий, позволяющих повысить напряжение пробоя до более чем 1500 вольт, и получить таким образом усиление более чем в 1000 раз. Следует иметь в виду, что простое повышение напряженности поля без предприятия дополнительных мер может привести к увеличению шумов.
Если требуются очень высокие коэффициенты усиления (105 — 106), возможна эксплуатация некоторых типов ЛФД при напряжениях выше пробойных. В этом случае требуется подавать на фотодиод ограниченные по току быстро спадающие импульсы. Для этого могут использоваться активные и пассивные стабилизаторы тока. Приборы, действующие таким образом работают в режиме Гейгера (Geiger mode). Этот режим применяется для создания однофотонных детекторов (при условии, что шумы достаточно малы)
№17
1).Мультиплексорам DWDM (в отличии от более традиционных WDM) присущи две отличительные черты:
использование только одного окна прозрачности 1550 нм, в пределах области усиления
EDFA (1530-1560 нм); малые расстояние ДА, между мультиплексными каналами (3,2 / 1,6 / 0,8 или 0,4 нм).
Кроме этого, поскольку мультиплексоры DWDM рассчитаны на работу с большим числом каналов (до 32-х и более), то наряду с устройствами DWDM, в которых мультиплексируются (демультиплексируются) одновременно все каналы, допускаются также новые устройства, не имеющие аналогов в системах WDM и работающие в режиме добавления или вывода одного и более каналов в/из основного мультиплексного потока, представленного ббльши*. числом других каналов.^ Так как выходные порты/полюса демультиплексора закреплены за определенными длинами волн, говорят, что такое устройство осуществляет пассивную маршрутизацию по длинам волн. Из-за малых расстояний между каналами и необходимости работы с большим числом каналов одновременно, изготовление мультиплексоров DWDM требует значительно большей прецизионности по сравнению с WDM мультиплексорами (использующими обычно окна прозрачности 1310 нм, 1550 нм или дополнительно область длин волн в окрестности 1650 нм). Также важно обеспечить высокие характеристики по ближним (коэффициент направленности) и дальним (изоляция) переходным помехам на полюсах DWDM устройства. Все это приводит к более высокой стоимости DWDM устройств по сравнению WDM.
Типовая схема DWDM мультиплексора с зеркальным отражающим элементом показана на рис1. Рассмотрим его работу в режиме демультиплексирования. Приходящий мультиплексный сигнал попадает на входной порт. Затем этот сигнал проходит через волновод- пластину и распределяется по множеству волноводов, представляющих дифракционную структуру AWG (arrayed waveguide grating). По-прежнему сигнал в каждом из волноводов остается мультиплексным, а каждый канал (Х1}Х2,... ) остается представленным во всех волноводах. Далее происходит отражение сигналов от зеркальной поверхности, и, в итоге, световые потоки вновь собираются в волноводе-пластине, где происходит их фокусировка и интерференция - образуются пространственно разнесенные интерференционные максимумы интенсивности, соответствующие разным каналам. Геометрия волновода-пластины, в частности, расположение выходных полюсов, и длины волноводов структуры AWG рассчитываются таким образом, чтобы интерференционные максимумы совпадали с выходными полюсами. Мультиплексирование происходит обратным путем.
Другой способ построения мультиплексора базируется не на одной, а на паре волново- дов-пластин (рис. 8.1 б). Принцип действия такого устройства аналогичен предыдущему случаю за исключением того, что здесь для фокусировки и интерференции используется дополнительная пластина.
D
WDM
мультиплексоры,
являясь чисто пассивными устройствами,
вносят большое затухание в сигнал.
Например, потери для устройства (рис.
8.1 а), работающего в режиме
демультиплексирования составляют
10-12 дБ, при дальних переходных помехах
<-20 дБ, и полуширине спектра сигнал
1 нм, (по материалам Oki
Electric
Industry
[5]).
Из-за больших потерь часто возникает
необходимость установления оптического
усилителя перед и/или после DWDM
мультиплексора.
на
DWDM можно организовать большее число
каналов, еще одно преимущество перед
CWDM заключается в том, что возможно
усиление сигнала при помощи недорогих
и эффективных эрбиевых усилителей
(Erbium Doped Fiber Amplifier, EDFA), тем самым можно
организовать протяженные оптические
линии с большой пропускной способностью
без использования промежуточной
электрической регенерации
2).Полупроводниковые лазерные усилители (ППЛУ). Основу ППЛУ составляет активная среда, аналогичная той, которая используется в полупроводниковых лазерах [11, 12]. В ППЛУ отсутствуют зеркальные резонаторы, характерные для полупроводниковых лазеров. Для уменьшения френелевского отражения с обеих сторон активной среды наносится специальное покрытие толщиной Х/4 с согласованным показателем преломления, рис.
Полупроводниковые лазерные усилители не получили столь широкого распространения, как усилители на примесном волокне. Дело в том, что ППЛУ свойственны два существенных недостатка.
Светоизлучающий активный слой имеет поперечный размер несколько микрон, но толщину з пределах одного микрона, что много меньше, чем диаметр светонесущей части оптического волокна (~ 9 мкм - для одномодового волокна). Вследствие этого большая часть светового потока из входящего волокна не попадает в активную область и теряется, что уменьшает КПД усилителя. Увеличить КПД можно, поставив между входящим волокном и активной средой линзу, но это приводит к усложнению конструкции.Второй недостаток имеет более тонкую природу. Дело в том, что выход (коэффициент усиления) ППЛУ зависит от направления поляризации и может отличаться на 4-8 дБ для двух ортогональных поляризаций. Это нежелательно, так как в стандартном одномодовом волокне поляризация распространяемого светового сигнала не контролируется. Мощность светового потока данной поляризации может флуктуировать вдоль длины. Отсюда вытекает, что коэффициент усиления ППЛУ зависит от неконтролируемого фактора. Можно уменьшить эту зависимость от поляризации путем установки двух лазеров - возможно как параллельное (требуется пара разветвителей), так и последовательное их подключение. Но это снова приводит к усложнению конструкции и росту стоимости.
Два приведенных недостатка нивелируются в тех случаях, когда ППЛУ интегрирован с другими оптическими устройствами. И именно так преимущественно используются ППЛУ. Одна из возможностей - производство совмещенного светоизлучающего лазерного диода, непосредственно на выходе которого устанавливается ППЛУ.
Н
а
рис. 4.14 показана еще одна реализация
источника мультиплексного многоволнового
излучения, в котором ППЛУ используются
в качестве широкополосного усилителя.
Несколько узкополосных полупроводниковых
лазеров на разных длинах волн генерируют
световые сигналы,
которые мультиплексируются и размножаются
посредством оптического разветвителя.
ППЛУ устанавливаются на конечном
участке, чтобы усилить ослабленные
после разветвления оптические
мультиплексные сигналы
№24
1) Режим работы лазера, при котором лазерное излучение содержит как продольные,
так и поперечные типы колебаний, называют многомодовым
Принцип действия
Физической основой работы лазера служит явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайное направление распространения, поляризацию и фазу.
Гелий-неоновый лазер. Светящийся луч в центре — это не собственно лазерный луч, а электрический разряд, порождающий свечение, подобно тому, как это происходит в неоновых лампах. Луч проецируется на экран справа в виде светящейся красной точки.
Вероятность того, что случайный фотон вызовет индуцированное излучение возбуждённого атома в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённым состоянии. Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых (так называемая инверсия населённостей). В состоянии термодинамического равновесия это условие не выполняются, поэтому используются различные системы накачки активной среды лазера (оптические, электрические, химические и др.)
Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет из себя два зеркала, одно из которых полупрозрачное — через него луч лазера частично выходит из резонатора. Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы (вращающиеся призмы, ячейки Керра и др.) для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности (так называемые гигантские импульсы. Этот режим работы лазера называют режимом модулированной добротности.
Генерируемое лазером излучение является монохроматическим (одной или дискретного набора длин волн), поскольку вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии, а, соответственно, и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами[12]. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости. Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляроиды, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера.
