
- •Часть I
- •Тема 1. Физические основы электроники 4
- •Тема 2. Источники вторичного электропитания 69
- •Тема 3. Усилители электрических сигналов 95
- •Тема 4. Импульсные и автогенерирующие устройства 137
- •Тема 5. Цифровая электроника и микропроцессорная техника 163
- •Тема 1. Физические основы электроники
- •1.1. Основные понятия электроники. Электропроводность полупроводников
- •1.2. Электрические переходы
- •1.3. Электронно-дырочный переход
- •1.4. Вольт-амперная характеристика электронно-дырочного перехода
- •1.5. Типы полупроводниковых диодов
- •1.6. Система обозначений полупроводниковых диодов
- •1.7. Транзисторы. Полевые и биполярные транзисторы
- •1.7.1. Устройство полевых транзисторов
- •1.7.2. Принцип действия полевого транзистора с управляющим p-n-переходом
- •1.7.3. Выходные статические характеристики полевого транзистора. Статические характеристики передачи полевого транзистора
- •1.7.4. Полевые транзисторы со встроенным каналом
- •1.7.5. Полевые транзисторы с индуцированным каналом
- •1.7.6. Малосигнальные параметры и система обозначений полевых транзисторов
- •1.7.7. Устройство и схемы включения биполярного транзистора
- •1.7.8. Режимы работы биполярного транзистора
- •1.7.9. Принцип работы биполярного транзистора в активном режиме
- •1.7.10. Параметры биполярного транзистора
- •Система z - параметров
- •Система y - параметров
- •Система h - параметров
- •1.7.11. Статические характеристики биполярных транзисторов
- •1.7.12. Система обозначения биполярных транзисторов
- •Тема 2. Источники вторичного электропитания
- •2.1. Принципы построения и классификация средств электропитания электронных устройств
- •2.2. Основные характеристики ивэп
- •2.3. Структурные схемы ивэп
- •2.4. Электрические фильтры
- •2.4.3. Полосовой lc-фильтр
- •2.4.4. Режекторный lc-фильтр
- •2.5. Выпрямители источников электропитания. Виды выпрямителей и их характеристики
- •2.5.1. Классификация выпрямителей
- •2.5.2. Однополупериодный выпрямитель
- •2.5.3. Двухполупериодный выпрямитель с нулевой точкой
- •2.5.4. Мостовая схема выпрямителя
- •2.5.5. Схема удвоения напряжения
- •2.5.6. Трехфазный выпрямитель
- •Тема 3. Усилители электрических сигналов
- •3.1. Основные понятия об усилителях и классификация усилителей
- •3.2.Основные характеристики и параметры усилителей
- •3.3. Характеристики и параметры усилителей, связанные с искажением сигналов в усилителе
- •3.4.Обратная связь в усилителях. Влияние ос на параметры усилителей
- •Влияние ос на параметры усилителей
- •3.5.Классы усиления транзисторных усилительных каскадов
- •3.6. Методы задания начального режима работы транзистора
- •3.7. Усилитель на биполярном транзисторе с общим эмиттером
- •3.8. Дифференциальный усилитель. Дрейф нуля в ду
- •3.8.1. Операционные усилители. Инвертирующие усилители. Неивертирующие усилители. Суммирующие и вычитающие усилители. Интеграторы
- •Инвертирующий усилитель
- •Неивертирующий усилитель
- •Суммирующий и вычитающий усилители
- •Интеграторы
- •3.9. Выходные усилители мощности
- •Тема 4. Импульсные и автогенерирующие устройства
- •4.1. Генерирующие и импульсные устройства. Передачи информации в импульсном режиме
- •4.2. Электронные ключи. Простейшие формирователи импульсных сигналов
- •4.2.1. Ключевой режим работы транзистора
- •Режим насыщения
- •4.2.2. Компараторы (схемы сравнения)
- •4.2.3. Триггер Шмитта
- •4.2.4. Мультивибраторы
- •4.2.5. Дифференцирующие rc цепи
- •4.2.6. Интегрирующие rc-цепи
- •4.2.7. Симметричный мультивибратор на оу
- •4.2.8. Одновибратор на оу
- •4.3. Генераторы линейно-изменяющегося напряжения (глин) на оу
- •4.3.1. Глин на оу с внешним запуском
- •4.3.2. Глин на оу в автогенераторном режиме.
- •4.4. Генераторы гармонических колебаний. Условия возникновения колебаний
- •4.4.1. Условия возникновения колебаний
- •4.4.2. Генераторы с rc-фазосдвигающими цепочками
- •4.4.3. Генераторы с мостом Вина
- •Тема 5. Цифровая электроника и микропроцессорная техника
- •5.1. Основные логические операции и их практическая реализация
- •5.1.1. Операция "не" (логическое отрицание или "инверсия")
- •5.1.2. Операция "или" (логическое сложение или дизъюнкция)
- •5.1.3. Операция "и" (логическое умножение или конъюнкция)
- •5.2. Типы логических микросхем
- •5.3. Элементы алгебры логики и синтеза комбинационных схем. Формы записи логических уравнений
- •5.3.1. Формы записи логических уравнений
- •5.3.2. Синтез комбинационных логических устройств
- •5.3.3. Реализация логических функций на элементах "и-не" и "или-не"
- •5.4. Интегральные комбинационные схемы
- •5.5. Логические устройства последовательного типа
- •5.5.1. Триггеры
- •5.5.2. Счётчики
- •5.5.3. Регистры
- •5.6. Цифровые запоминающие устройства
- •5.6.1. Структуры запоминающих устройств
- •5.7. Аналого-цифровые и цифро-аналоговые преобразователи
- •5.7.1. Аналого-цифровые преобразователи
5.5.3. Регистры
Регистрами называются устройства, выполняющие функции приема, хранения, передачи и преобразования информации. Регистры – самые распространенные узлы цифровых устройств. Информация в регистре хранится в виде двоичного кода. Регистр представляет собой упорядоченную последовательность триггеров, число которых соответствует числу разрядов в слове. Каждому разряду числа, записанного в регистр, соответствует свой разряд регистра, выполненного, как правило, на основе D-триггера.
Над словами выполняется ряд операций понимаем: прием, выдача, хранение, сдвиг в разрядной сетке, поразрядные логические операции, преобразование информации из одного вида в другой (последовательного кода в параллельный и наоборот).
Основным классификационным признаком, по которому различают регистры, является способ записи информации или кода в регистр. По этому признаку можно выделить регистры трех типов: параллельные, последовательные и параллельно-последовательные.
В параллельные регистры запись числа осуществляется параллельным кодом, т.е. во все разряды одновременно. Последовательные регистры характеризуются последовательной записью кода числа, начиная с младшего или старшего разряда, путем сдвига кода тактирующими импульсами. Регистры параллельно-последовательного типа имеют входы как для параллельной, так и для последовательной записи числа.
По назначению регистры подразделяются на накопительные (регистры памяти, хранения) и сдвигающие.
В свою очередь сдвигающие регистры делятся: по способу ввода-вывода информации на параллельные, последовательные и комбинированные; по направлению передачи информации на однонаправленные и реверсивные регистры. Как правило, сдвигающие регистры выпускаются многофункциональными.
Как было сказано выше параллельный регистр отличается тем, что запись двоичного числа осуществляется в нём параллельным кодом, т.е. во все разряды регистра одновременно. Они принимают, хранят и передают информацию в виде двоичного числа, в связи с чем называются регистрами памяти. N-разрядный регистр содержит N-триггеров. Пример выполнения 3-х разрядного регистра на D-триггерах приведён на рис. 5.5.19., где X, Y и Z – информационные входы, С – тактовый вход.
Рис. 5.5.19. Параллельный 3-х разрядный регистр на D-триггерах
Во время фронта
импульса Т
срабатывают сразу все триггеры:
,
,
.
Информация считывается с выходов
,
,
.
Здесь изображён один канал поступления
информации. В общем случае их может быть
несколько, при этом каждый триггер
должен иметь соответствующее количество
информационных входов. Естественно,
что триггеры имеют установочный и
считывающий входы.
Последовательный регистр (сдвигающий регистр или регистр сдвига). Как было сказано выше он отличается тем, что запись числа в нём производится последовательным кодом, т.е. число поступает по одному входу. Значения разрядов передаются последовательно. Сам регистр состоит из последовательно соединенных ячеек памяти, в качестве которых используются D-триггеры, как показано на рис. 5.5.20.
|
|
Рис. 5.5.20. Последовательный регистр на D-триггерах |
Рис. 5.5.21. Временные диаграммы работы последовательного регистр на D-триггерах |
При поступлении
первого импульса Т
в момент его фронта в каждом триггере
записывается значение логического
сигнала на его входе:
(у
нас Х=1),
(
в
момент прихода первого импульса),
(
=0).
С приходом второго импульса Т
процесс записи повторяется, т.е. состояние
предшествующего триггера записывается
в последующий (или информация как бы
сдвигается). В нашем случае с приходом
второго импульса имеем:
,
;
.
Третий импульс С дает:
;
;
;
Соответствующие временные диаграммы приведены на рис. 5.5.21. В общем случае n-разрядное число регистр запоминает за n-тактовых импульсов. При этом последовательный код, поступивший на вход регистра, преобразуется в параллельный (у нас это число 101, причем читать начинаем со старшего разряда, т.е. с ). С поступлением каждого тактового импульса Т информация сдвигается в регистре на один разряд, что равносильно умножению кода на 2 (действительно 010 - это 2, а 100 - это 4).
Считывание информации возможно последовательное с выхода старшего разряда при дальнейшем поступлении тактовых импульсов (т.е. в виде последовательного кода). Для параллельного считывания используются выходы всех разрядов регистра.
Способность регистра сдвигать информацию по мере поступления тактовых импульсов широко используется в устройствах управления.
Помимо рассмотренных существуют параллельно-последовательные регистры, совмещающие свойства обоих, т.е. записывать информацию, как в последовательном, так и в параллельном кодах, и считывать информацию последовательным или параллельным кодом.
Реверсивные регистры служат для обеспечения возможности сдвига числа в сторону как старшего, так и младшего разрядов благодаря специально заложенным связям. С помощью управляющего сигнала вводится в действие либо прямая, либо обратная связи между разрядами.