Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УчП1_УФИ_ ДПП_ДС_Ф9_Электроника_Ч1.doc
Скачиваний:
3
Добавлен:
01.05.2025
Размер:
4.18 Mб
Скачать

4.4.3. Генераторы с мостом Вина

Мостом Вина называют схему, приведенную на рис. 4.4.3. Эта схема является наиболее популярной среди схем RC-генераторов. Она обладает достаточно хорошей стабильностью частоты и может давать очень малые искажения, кроме того, фильтр легко перестраивается.

При частоте входного сигнала, равной резонансной частоте

f0 = ,

напряжение на выходе UВЫХ равно нулю (при ненулевом входном напряжении UВХ). Включая мост Вина в цепь ОС усилителя, можно получить генератор гармонических колебаний.

Рис. 4.4.3. Мост Вина

В реальных схемах генераторов необходимо соблюдать условие баланса амплитуд, для этого нужно коэффициент передачи моста Вина сделать несколько отличным от нуля.

Поэтому реально мост работает с некоторым рассогласованием, при котором изменяются указанные на схеме соотношения сопротивлений в резистивном плече моста.

Для генераторов гармонических колебаний важной проблемой является автоматическая стабилизация амплитуды выходного напряжения. Если в схеме не предусмотрены устройства автоматической стабилизации, устойчивая работа генератора окажется невозможной. В этом случае после возникновения колебаний амплитуда выходного напряжения начнет постепенно увеличиваться, что приведет к насыщению операционного усилителя. В результате выходное напряжение генератора будет отличаться от гармонического. Один из способов устранения этого эффекта предполагает включение в цепь ООС нелинейных элементов.

4.4.4. LC-генераторы

Наиболее распространенный способ получения высокочастотных колебаний – это применение генератора, в котором LC-контур настроенный на определенную частоту, подключен к усилительной схеме, чтобы обеспечить необходимое усиление на его резонансной частоте. Охватывающая схему петля положительной обратной связи применяется для поддержания колебаний на резонансной частоте LC-контура, и такая схема будет самозапускающейся.

Эти генераторы имеют сравнительно высокую стабильность частоты колебаний, устойчиво работают при значительных изменениях параметров активных элементов, обеспечивают получение колебаний, имеющих малый коэффициент гармоник. К недостаткам их относятся трудности изготовления температурно-независимых индуктивностей, а также высокая стоимость и громоздкость последних. Особенно это проявляется при создании автогенераторов низких частот, в которых даже при применении ферромагнитных сердечников габаритные размеры, масса и стоимость получаются большими.

Сущность самовозбуждения заключается в следующем. При включении источника питания конденсатор колебательного контура, включенного чаще всего в коллекторную цепь транзистора, заряжается. В контуре возникают затухающие колебания, причем часть тока (напряжения) этих колебаний подается на управляющие электроды управляющего активного элемента, образуя положительную обратную связь. Это приводит к пополнению энергии LC-контура. Автоколебания превращаются в незатухающие. Частота автоколебаний определяется резонансной частотой LC-контура:

ƒ0 = .

Многочисленные схемы автогенераторов LC-типа различаются, в основном, схемами введения сигнала обратной связи и способами подключения к усилителю колебательного контура.

Для генераторов используется трехвыводные резонансные контуры, называемые трехточками: индуктивной (рис. 4.4.4, а)) и емкостной (рис. 4.4.4., б)). В схемах генераторов три вывода LC-контура подключают к трем выводам транзисторов.

а) б)

Рис.4.4.4. LC-контуры: индуктивная трехточка (а), емкостная трехточка (б)

На рис. 4.4.5. показаны схемы генераторов с индуктивной (а) и с емкостной (б) трехточкой.

Рис.4.4.5. LC-генераторы с индуктивной (а) и емкостной трехточкой (б)

На рисунке 4.4.5., а) источник питания UПИТ подключен к части витков катушки индуктивности L, что уменьшает его шунтирующее действие и повышает добротность колебательного контура LC1. Сопротивление разделительного конденсатора C2 на частоте колебаний близко к нулю. На рис. 4.4.5., б) показан генератор, собранный по схеме емкостной трехточки. В нем напряжение обратной связи снимается с конденсатора С2. Энергия, поддерживающая автоколебания, вводится в форме тока IЭ. Для уменьшения шунтирующего действия транзистора он подключен к контуру через емкостной делитель напряжения.

Перестройку частоты автоколебаний осуществляют изменением емкости конденсатора, включенного в колебательный контур. В качестве такого конденсатора используется варикап и перестройка частоты осуществляется электрическим путем. Изменяя приложенное к нему постоянное напряжение, изменяют его емкость, и, соответственно, резонансную частоту контура. Относительная нестабильность частоты у автогенераторов 10-3÷10-5.