
- •Часть I
- •Тема 1. Физические основы электроники 4
- •Тема 2. Источники вторичного электропитания 69
- •Тема 3. Усилители электрических сигналов 95
- •Тема 4. Импульсные и автогенерирующие устройства 137
- •Тема 5. Цифровая электроника и микропроцессорная техника 163
- •Тема 1. Физические основы электроники
- •1.1. Основные понятия электроники. Электропроводность полупроводников
- •1.2. Электрические переходы
- •1.3. Электронно-дырочный переход
- •1.4. Вольт-амперная характеристика электронно-дырочного перехода
- •1.5. Типы полупроводниковых диодов
- •1.6. Система обозначений полупроводниковых диодов
- •1.7. Транзисторы. Полевые и биполярные транзисторы
- •1.7.1. Устройство полевых транзисторов
- •1.7.2. Принцип действия полевого транзистора с управляющим p-n-переходом
- •1.7.3. Выходные статические характеристики полевого транзистора. Статические характеристики передачи полевого транзистора
- •1.7.4. Полевые транзисторы со встроенным каналом
- •1.7.5. Полевые транзисторы с индуцированным каналом
- •1.7.6. Малосигнальные параметры и система обозначений полевых транзисторов
- •1.7.7. Устройство и схемы включения биполярного транзистора
- •1.7.8. Режимы работы биполярного транзистора
- •1.7.9. Принцип работы биполярного транзистора в активном режиме
- •1.7.10. Параметры биполярного транзистора
- •Система z - параметров
- •Система y - параметров
- •Система h - параметров
- •1.7.11. Статические характеристики биполярных транзисторов
- •1.7.12. Система обозначения биполярных транзисторов
- •Тема 2. Источники вторичного электропитания
- •2.1. Принципы построения и классификация средств электропитания электронных устройств
- •2.2. Основные характеристики ивэп
- •2.3. Структурные схемы ивэп
- •2.4. Электрические фильтры
- •2.4.3. Полосовой lc-фильтр
- •2.4.4. Режекторный lc-фильтр
- •2.5. Выпрямители источников электропитания. Виды выпрямителей и их характеристики
- •2.5.1. Классификация выпрямителей
- •2.5.2. Однополупериодный выпрямитель
- •2.5.3. Двухполупериодный выпрямитель с нулевой точкой
- •2.5.4. Мостовая схема выпрямителя
- •2.5.5. Схема удвоения напряжения
- •2.5.6. Трехфазный выпрямитель
- •Тема 3. Усилители электрических сигналов
- •3.1. Основные понятия об усилителях и классификация усилителей
- •3.2.Основные характеристики и параметры усилителей
- •3.3. Характеристики и параметры усилителей, связанные с искажением сигналов в усилителе
- •3.4.Обратная связь в усилителях. Влияние ос на параметры усилителей
- •Влияние ос на параметры усилителей
- •3.5.Классы усиления транзисторных усилительных каскадов
- •3.6. Методы задания начального режима работы транзистора
- •3.7. Усилитель на биполярном транзисторе с общим эмиттером
- •3.8. Дифференциальный усилитель. Дрейф нуля в ду
- •3.8.1. Операционные усилители. Инвертирующие усилители. Неивертирующие усилители. Суммирующие и вычитающие усилители. Интеграторы
- •Инвертирующий усилитель
- •Неивертирующий усилитель
- •Суммирующий и вычитающий усилители
- •Интеграторы
- •3.9. Выходные усилители мощности
- •Тема 4. Импульсные и автогенерирующие устройства
- •4.1. Генерирующие и импульсные устройства. Передачи информации в импульсном режиме
- •4.2. Электронные ключи. Простейшие формирователи импульсных сигналов
- •4.2.1. Ключевой режим работы транзистора
- •Режим насыщения
- •4.2.2. Компараторы (схемы сравнения)
- •4.2.3. Триггер Шмитта
- •4.2.4. Мультивибраторы
- •4.2.5. Дифференцирующие rc цепи
- •4.2.6. Интегрирующие rc-цепи
- •4.2.7. Симметричный мультивибратор на оу
- •4.2.8. Одновибратор на оу
- •4.3. Генераторы линейно-изменяющегося напряжения (глин) на оу
- •4.3.1. Глин на оу с внешним запуском
- •4.3.2. Глин на оу в автогенераторном режиме.
- •4.4. Генераторы гармонических колебаний. Условия возникновения колебаний
- •4.4.1. Условия возникновения колебаний
- •4.4.2. Генераторы с rc-фазосдвигающими цепочками
- •4.4.3. Генераторы с мостом Вина
- •Тема 5. Цифровая электроника и микропроцессорная техника
- •5.1. Основные логические операции и их практическая реализация
- •5.1.1. Операция "не" (логическое отрицание или "инверсия")
- •5.1.2. Операция "или" (логическое сложение или дизъюнкция)
- •5.1.3. Операция "и" (логическое умножение или конъюнкция)
- •5.2. Типы логических микросхем
- •5.3. Элементы алгебры логики и синтеза комбинационных схем. Формы записи логических уравнений
- •5.3.1. Формы записи логических уравнений
- •5.3.2. Синтез комбинационных логических устройств
- •5.3.3. Реализация логических функций на элементах "и-не" и "или-не"
- •5.4. Интегральные комбинационные схемы
- •5.5. Логические устройства последовательного типа
- •5.5.1. Триггеры
- •5.5.2. Счётчики
- •5.5.3. Регистры
- •5.6. Цифровые запоминающие устройства
- •5.6.1. Структуры запоминающих устройств
- •5.7. Аналого-цифровые и цифро-аналоговые преобразователи
- •5.7.1. Аналого-цифровые преобразователи
4.2.2. Компараторы (схемы сравнения)
Компараторами в
общем случае называются устройства,
осуществляющие сравнение измеряемого
входного напряжения Uвх
с некоторым опорным напряжением Uоп.
Компараторы называют еще нуль-органами,
т.к. они меняют свое состояние при
Uвх-Uоп
0.
Компараторы широко применяются в
системах автоматического управления
и в измерительной технике, а также в
качестве базового элемента для построения
устройств импульсного и цифрового
действия.
Простейшая схема компаратора может быть построена на обычном ОУ (рис. 4.2.3. а) .
а) б)
Рис. 4.2.3. а) Схема компаратора на ОУ; б) Передаточная характеристика ОУ.
Действительно, на передаточной характеристике ОУ, изображенной на рисунке 4.2.3., б, мы ранее ограничивались рассмотрением линейного участка АОВ при (Uвх1-Uвх2)=ΔUвх<Uгр, т.е. при условии малых сигналов на входах ОУ. При
ΔUвх>Uгр
выходное напряжение ОУ ограничено значением ±Uвыхmax, т.к. транзисторы выходных каскадов ОУ при больших сигналах работают в ключевом режиме (т.е. Uвыхmax чуть меньше Еп).
Т.к. Кu ОУ весьма велик, то
весьма мало. В идеале Кu→∞ и Uгр→0. Реально в ИМС Uгр не более нескольких милливольт. Т.е. можно сделать вывод, что на линейном участке Uвх1-Uвх2 0;
таким образом, получаем, что при
Uвх1-Uвх2>0 (т.е. Uвх1>Uвх2) Uвых=+Uвыхmax,
а при Uвх1-Uвх2<0 Uвых=-Uвыхmax.
Выходное напряжение ОУ при |Uвх1-Uвх2|>Uгр
зависит от того, какое из входных напряжений больше. Или иными словами ОУ является в этом случае схемой сравнения (компаратором). Если положить Uвх2=const, Uвх1=Usinώt,
то работа ОУ в режиме компаратора иллюстрируется с помощью рисунке 4.2.4. Компаратор переключается в моменты равенства Uвх1=Uвх2 и напряжение на выходе имеет форму прямоугольных импульсов. Естественно, что при постоянной амплитуде и частоте синусоиды длительность импульсов зависит от величины Uвх2, играющего роль опорного напряжения.
Рис.4.2.4.Временные диаграммы, поясняющие работу ОУ в режиме компаратора
4.2.3. Триггер Шмитта
Широкое распространение получил компаратор, в котором ОУ охвачен ПОС по неинвертирующему входу с помощью резисторов R1 и Rос, как показано на рисунке 4.2.5., а)
Приведенная схема известна, как триггер Шмитта или пороговый элемент. Переключение схемы в состояние -Uвыхmax происходит при достижении Uвх напряжения (порога) срабатывания Uср, а возвращение в исходное состояние при снижении Uвх до порога отпускания Uотп. Значение пороговых напряжений находят при Uо=0; cхема очевидно обладает передаточной характеристикой с гистерезисом. Переход от одного состояния в другое происходит скачкообразно под действием ПОС. Действительно, при Uвх=Uср выходное напряжение начнет уменьшаться, т.к. Uвх подается по инверсному входу. Отрицательное приращение ΔUвых по цепочке ПОС Rос, R1 поступит на прямой вход ОУ, которое ОУ усилит и дополнительно уменьшится Uвых, т.е. появится дополнительное отрицательное приращение Uвых, которое вновь уменьшит напряжение по прямому входу ОУ. Процесс идёт лавинообразно.
a) б)
Рис.4.2.5. а) Компаратор, с ОУ охваченным ПОС (триггер Шмитта); б) Симметричная относительно оси ординат передаточная характеристика компаратора.
Расчет Uср и Uотп производится при Uо=0, т.е. в момент сравнения сигналов по обоим входам, а именно:
(4.1)
(4.2)
Точка, относительно которой симметрична петля гистерезиса, находится как:
Т.е. Uср и Uотп различны. Ширина гистерезиса (Uср-Uотп) растет с ростом отношения R1/Rос. ПОС, как было показано, приводит к регенеративным процессам, тем самым ускоряет процессы переключения. Но при этом вблизи порога срабатывания помехоустойчивость таких схем низка.
Сейчас созданы специализированные ОУ, предназначенные для импульсного режима работы. Компараторы, выполненные на них (к стати сами эти схемы ОУ получили название компараторов на ИМС), обладают большим быстродействием.
Возможна работа компаратора с ПОС при Uоп=0, естественно, что передаточная характеристика такого компаратора становится симметричной относительно оси ординат, т.е. смещается влево так, что U’оп=0 (см. рис. 4.2.5., б).