
- •Часть I
- •Тема 1. Физические основы электроники 4
- •Тема 2. Источники вторичного электропитания 69
- •Тема 3. Усилители электрических сигналов 95
- •Тема 4. Импульсные и автогенерирующие устройства 137
- •Тема 5. Цифровая электроника и микропроцессорная техника 163
- •Тема 1. Физические основы электроники
- •1.1. Основные понятия электроники. Электропроводность полупроводников
- •1.2. Электрические переходы
- •1.3. Электронно-дырочный переход
- •1.4. Вольт-амперная характеристика электронно-дырочного перехода
- •1.5. Типы полупроводниковых диодов
- •1.6. Система обозначений полупроводниковых диодов
- •1.7. Транзисторы. Полевые и биполярные транзисторы
- •1.7.1. Устройство полевых транзисторов
- •1.7.2. Принцип действия полевого транзистора с управляющим p-n-переходом
- •1.7.3. Выходные статические характеристики полевого транзистора. Статические характеристики передачи полевого транзистора
- •1.7.4. Полевые транзисторы со встроенным каналом
- •1.7.5. Полевые транзисторы с индуцированным каналом
- •1.7.6. Малосигнальные параметры и система обозначений полевых транзисторов
- •1.7.7. Устройство и схемы включения биполярного транзистора
- •1.7.8. Режимы работы биполярного транзистора
- •1.7.9. Принцип работы биполярного транзистора в активном режиме
- •1.7.10. Параметры биполярного транзистора
- •Система z - параметров
- •Система y - параметров
- •Система h - параметров
- •1.7.11. Статические характеристики биполярных транзисторов
- •1.7.12. Система обозначения биполярных транзисторов
- •Тема 2. Источники вторичного электропитания
- •2.1. Принципы построения и классификация средств электропитания электронных устройств
- •2.2. Основные характеристики ивэп
- •2.3. Структурные схемы ивэп
- •2.4. Электрические фильтры
- •2.4.3. Полосовой lc-фильтр
- •2.4.4. Режекторный lc-фильтр
- •2.5. Выпрямители источников электропитания. Виды выпрямителей и их характеристики
- •2.5.1. Классификация выпрямителей
- •2.5.2. Однополупериодный выпрямитель
- •2.5.3. Двухполупериодный выпрямитель с нулевой точкой
- •2.5.4. Мостовая схема выпрямителя
- •2.5.5. Схема удвоения напряжения
- •2.5.6. Трехфазный выпрямитель
- •Тема 3. Усилители электрических сигналов
- •3.1. Основные понятия об усилителях и классификация усилителей
- •3.2.Основные характеристики и параметры усилителей
- •3.3. Характеристики и параметры усилителей, связанные с искажением сигналов в усилителе
- •3.4.Обратная связь в усилителях. Влияние ос на параметры усилителей
- •Влияние ос на параметры усилителей
- •3.5.Классы усиления транзисторных усилительных каскадов
- •3.6. Методы задания начального режима работы транзистора
- •3.7. Усилитель на биполярном транзисторе с общим эмиттером
- •3.8. Дифференциальный усилитель. Дрейф нуля в ду
- •3.8.1. Операционные усилители. Инвертирующие усилители. Неивертирующие усилители. Суммирующие и вычитающие усилители. Интеграторы
- •Инвертирующий усилитель
- •Неивертирующий усилитель
- •Суммирующий и вычитающий усилители
- •Интеграторы
- •3.9. Выходные усилители мощности
- •Тема 4. Импульсные и автогенерирующие устройства
- •4.1. Генерирующие и импульсные устройства. Передачи информации в импульсном режиме
- •4.2. Электронные ключи. Простейшие формирователи импульсных сигналов
- •4.2.1. Ключевой режим работы транзистора
- •Режим насыщения
- •4.2.2. Компараторы (схемы сравнения)
- •4.2.3. Триггер Шмитта
- •4.2.4. Мультивибраторы
- •4.2.5. Дифференцирующие rc цепи
- •4.2.6. Интегрирующие rc-цепи
- •4.2.7. Симметричный мультивибратор на оу
- •4.2.8. Одновибратор на оу
- •4.3. Генераторы линейно-изменяющегося напряжения (глин) на оу
- •4.3.1. Глин на оу с внешним запуском
- •4.3.2. Глин на оу в автогенераторном режиме.
- •4.4. Генераторы гармонических колебаний. Условия возникновения колебаний
- •4.4.1. Условия возникновения колебаний
- •4.4.2. Генераторы с rc-фазосдвигающими цепочками
- •4.4.3. Генераторы с мостом Вина
- •Тема 5. Цифровая электроника и микропроцессорная техника
- •5.1. Основные логические операции и их практическая реализация
- •5.1.1. Операция "не" (логическое отрицание или "инверсия")
- •5.1.2. Операция "или" (логическое сложение или дизъюнкция)
- •5.1.3. Операция "и" (логическое умножение или конъюнкция)
- •5.2. Типы логических микросхем
- •5.3. Элементы алгебры логики и синтеза комбинационных схем. Формы записи логических уравнений
- •5.3.1. Формы записи логических уравнений
- •5.3.2. Синтез комбинационных логических устройств
- •5.3.3. Реализация логических функций на элементах "и-не" и "или-не"
- •5.4. Интегральные комбинационные схемы
- •5.5. Логические устройства последовательного типа
- •5.5.1. Триггеры
- •5.5.2. Счётчики
- •5.5.3. Регистры
- •5.6. Цифровые запоминающие устройства
- •5.6.1. Структуры запоминающих устройств
- •5.7. Аналого-цифровые и цифро-аналоговые преобразователи
- •5.7.1. Аналого-цифровые преобразователи
Тема 4. Импульсные и автогенерирующие устройства
4.1. Генерирующие и импульсные устройства. Передачи информации в импульсном режиме
Генератором электрических колебаний называют устройство, преобразующее энергию источника питания постоянного напряжения в энергию переменных колебаний требуемой формы и частоты. В зависимости от формы выходного напряжения различают:
генераторы гармонических колебаний;
генераторы негармонических колебаний (импульсные генераторы).
Любой генератор, независимо от формы выходных колебаний, может работать в одном из двух режимов: режим автоколебаний и режим внешнего запуска (ждущий).
Генератор, работающий в режиме автоколебаний, обычно называют автогенератором. Выходное переменное напряжение на его выходе формируется сразу после подключения напряжения питания и не требует для начала работы подачи внешнего управляющего воздействия.
Генераторы, работающие в режиме запуска внешними импульсами, после подключения источника питания могут сколь угодно долго находиться в устойчивом состоянии, не формируя выходное переменное напряжение. При подаче управляющего сигнала на вход такого генератора, на его выходе формируется выходной сигнал, параметры которого полностью определяются собственными характеристиками устройства. Такой режим работы называют ждущим или заторможенным. Большое распространение получили заторможенные мультивибраторы – одновибраторы.
Автогенераторный режим работы применяется в устройствах, используемых в основном в качестве задающих генераторов, а ждущий – в устройствах, преобразующих форму импульсов к требуемому виду.
В современной электронике наряду с устройствами непрерывного действия широко применяются так называемые импульсные устройства, принципиальным отличием которых является то, что сигналы, действующие в них, являются дискретными (прерывистыми), а не непрерывными функциями времени. Появление импульсных устройств было обусловлено целым рядом объективных причин:
многие производственные процессы имеют периодический характер; технологические процессы часто разбивают на отдельные такты (операции);
по одному каналу связи необходимо передавать различную информацию;
при создании цифровой вычислительной техники возникла необходимость в создании большого числа устройств, использующих импульсный принцип действия и т.д.
Однако, помимо чисто производственных причин, в широком развитии импульсной техники сыграли существенную роль ряд особенностей, свойственных импульсному режиму работы, а именно:
при относительно малой средней мощности может достигаться весьма большая мощность сигнала в импульсе;
импульсные устройства на фоне непрерывных обладают обычно большим к.п.д. (за счет отсутствия потребления энергии между импульсами);
в импульсных устройствах меньше сказывается на их работе разброс параметров применяемых приборов (т.к. работают они (транзисторы) в ключевом режиме), по той же причине выше помехозащищенность, точность и надежность электронных устройств;
в каналах связи, использующих импульсный метод, выше пропускная способность в отношении количества информации, и выше скорость передачи информации;
при реализации импульсных устройств используется, как правило, ограниченный набор однотипных элементов, что в общем случае упрощает устройство в целом.
В импульсной технике применяются импульсы самой различной формы: прямоугольной, пилообразной, экспоненциальной и др., как показано на рис. 4.1.1.
Рис. 4.1.1. Импульсы различной формы:
Импульсный сигнал характеризуется рядом параметров. Остановимся на основных из них применительно к наиболее часто применяемым прямоугольным импульсам:
Uм - амплитуда импульса;
tи - длительность импульса;
tп длительность паузы между импульсами;
T=tи+tп - период повторения;
f=1/T - частота следования;
Qи=T/tи – скважность.
Реально импульсы характеризуются еще длительностью фронта – tф и спада (среза) tс. Чаще всего tф и tс определяются как время наростания или спада импульса от 0,1 до 0,9Uм. Обычно tф<<tи>>tс. В случае необходимости для прямоугольных импульсов вводят понятие спада вершины импульса ΔU и его относительную величину ΔU/Uм. Используется и коэффициент заполнения g=tи/T=1/Qи.
Цифровые методы обработки и преобразования информации базируются на использовании сигнала прямоугольной формы, имеющего два дискретных уровня напряжения: высокий, которому присваивается символ "1" и низкий с соответствующим ему символом "0". Именно на таком виде сигнала основана работа цифровых вычислительных машин и используемая в них двоичная система счисления.
Для передачи информации о непрерывном сигнале изменяется один или несколько параметров последовательности импульсов, т.е. производится модуляция. Известны: АИМ (амплитудно-импульсная) ШИМ (широтно-импульсная), ЧИМ (частотно-импульсная), ФИМ (фазоимпульсная) модуляции. Для увеличения точности и помехозащищенности применяется кодово-импульсная модуляция, при которой информация представляется в виде числа, которому соответствует определенный набор импульсов (код). В последнем случае параметры самого импульса не меняются, а существенно лишь его наличие или отсутствие.
Импульсные устройства широко распространены в вычислительной технике, автоматике, преобразовательной технике, информационно-измерительной технике, системах связи и радиолокации, радиоастрономии и радионавигации.