
- •Часть I
- •Тема 1. Физические основы электроники 4
- •Тема 2. Источники вторичного электропитания 69
- •Тема 3. Усилители электрических сигналов 95
- •Тема 4. Импульсные и автогенерирующие устройства 137
- •Тема 5. Цифровая электроника и микропроцессорная техника 163
- •Тема 1. Физические основы электроники
- •1.1. Основные понятия электроники. Электропроводность полупроводников
- •1.2. Электрические переходы
- •1.3. Электронно-дырочный переход
- •1.4. Вольт-амперная характеристика электронно-дырочного перехода
- •1.5. Типы полупроводниковых диодов
- •1.6. Система обозначений полупроводниковых диодов
- •1.7. Транзисторы. Полевые и биполярные транзисторы
- •1.7.1. Устройство полевых транзисторов
- •1.7.2. Принцип действия полевого транзистора с управляющим p-n-переходом
- •1.7.3. Выходные статические характеристики полевого транзистора. Статические характеристики передачи полевого транзистора
- •1.7.4. Полевые транзисторы со встроенным каналом
- •1.7.5. Полевые транзисторы с индуцированным каналом
- •1.7.6. Малосигнальные параметры и система обозначений полевых транзисторов
- •1.7.7. Устройство и схемы включения биполярного транзистора
- •1.7.8. Режимы работы биполярного транзистора
- •1.7.9. Принцип работы биполярного транзистора в активном режиме
- •1.7.10. Параметры биполярного транзистора
- •Система z - параметров
- •Система y - параметров
- •Система h - параметров
- •1.7.11. Статические характеристики биполярных транзисторов
- •1.7.12. Система обозначения биполярных транзисторов
- •Тема 2. Источники вторичного электропитания
- •2.1. Принципы построения и классификация средств электропитания электронных устройств
- •2.2. Основные характеристики ивэп
- •2.3. Структурные схемы ивэп
- •2.4. Электрические фильтры
- •2.4.3. Полосовой lc-фильтр
- •2.4.4. Режекторный lc-фильтр
- •2.5. Выпрямители источников электропитания. Виды выпрямителей и их характеристики
- •2.5.1. Классификация выпрямителей
- •2.5.2. Однополупериодный выпрямитель
- •2.5.3. Двухполупериодный выпрямитель с нулевой точкой
- •2.5.4. Мостовая схема выпрямителя
- •2.5.5. Схема удвоения напряжения
- •2.5.6. Трехфазный выпрямитель
- •Тема 3. Усилители электрических сигналов
- •3.1. Основные понятия об усилителях и классификация усилителей
- •3.2.Основные характеристики и параметры усилителей
- •3.3. Характеристики и параметры усилителей, связанные с искажением сигналов в усилителе
- •3.4.Обратная связь в усилителях. Влияние ос на параметры усилителей
- •Влияние ос на параметры усилителей
- •3.5.Классы усиления транзисторных усилительных каскадов
- •3.6. Методы задания начального режима работы транзистора
- •3.7. Усилитель на биполярном транзисторе с общим эмиттером
- •3.8. Дифференциальный усилитель. Дрейф нуля в ду
- •3.8.1. Операционные усилители. Инвертирующие усилители. Неивертирующие усилители. Суммирующие и вычитающие усилители. Интеграторы
- •Инвертирующий усилитель
- •Неивертирующий усилитель
- •Суммирующий и вычитающий усилители
- •Интеграторы
- •3.9. Выходные усилители мощности
- •Тема 4. Импульсные и автогенерирующие устройства
- •4.1. Генерирующие и импульсные устройства. Передачи информации в импульсном режиме
- •4.2. Электронные ключи. Простейшие формирователи импульсных сигналов
- •4.2.1. Ключевой режим работы транзистора
- •Режим насыщения
- •4.2.2. Компараторы (схемы сравнения)
- •4.2.3. Триггер Шмитта
- •4.2.4. Мультивибраторы
- •4.2.5. Дифференцирующие rc цепи
- •4.2.6. Интегрирующие rc-цепи
- •4.2.7. Симметричный мультивибратор на оу
- •4.2.8. Одновибратор на оу
- •4.3. Генераторы линейно-изменяющегося напряжения (глин) на оу
- •4.3.1. Глин на оу с внешним запуском
- •4.3.2. Глин на оу в автогенераторном режиме.
- •4.4. Генераторы гармонических колебаний. Условия возникновения колебаний
- •4.4.1. Условия возникновения колебаний
- •4.4.2. Генераторы с rc-фазосдвигающими цепочками
- •4.4.3. Генераторы с мостом Вина
- •Тема 5. Цифровая электроника и микропроцессорная техника
- •5.1. Основные логические операции и их практическая реализация
- •5.1.1. Операция "не" (логическое отрицание или "инверсия")
- •5.1.2. Операция "или" (логическое сложение или дизъюнкция)
- •5.1.3. Операция "и" (логическое умножение или конъюнкция)
- •5.2. Типы логических микросхем
- •5.3. Элементы алгебры логики и синтеза комбинационных схем. Формы записи логических уравнений
- •5.3.1. Формы записи логических уравнений
- •5.3.2. Синтез комбинационных логических устройств
- •5.3.3. Реализация логических функций на элементах "и-не" и "или-не"
- •5.4. Интегральные комбинационные схемы
- •5.5. Логические устройства последовательного типа
- •5.5.1. Триггеры
- •5.5.2. Счётчики
- •5.5.3. Регистры
- •5.6. Цифровые запоминающие устройства
- •5.6.1. Структуры запоминающих устройств
- •5.7. Аналого-цифровые и цифро-аналоговые преобразователи
- •5.7.1. Аналого-цифровые преобразователи
Неивертирующий усилитель
Рассмотрим схему неинвертирующего усилителя (рис.12.3).
Для анализа схемы воспользуемся тем, что разность напряжений для ОУ, охваченного ООС, равно нулю. Тогда напряжение в точке А UA = UВХ. Напряжение UA снимается с делителя напряжения:
UА = UВЫХ R1 / (R1 + RОС).
Если UА = UВХ, то
КU = UВЫХ / UВХ =1 + RОС / R1.
Рис.12.3. Неивертирующий усилитель на ОУ
В смехе реализована последовательная ООС по напряжению, вследствие чего входное сопротивление схемы велико (для ОУ с биполярными транзисторами на входе оно превышает 108 Ом), а выходное – доли Ом.
Главное достоинство схемы – высокое входное сопротивление, недостаток – на входе ОУ имеется синфазное напряжение, равное входному сигналу.
На рис. 12.4 представлен повторитель на основе ОУ. Он представляет собой неинвертирующий усилитель, в котором сопротивление резистора R1 равно бесконечности (разрыв), а сопротивление резистора RОС – нулю (замыкание), при этом коэффициент передачи схемы равен нулю.
Усилитель с единичным коэффициентом повторения называют иногда буфером, так как он обладает отличными свойствами для согласования схем с высокими выходными и низкими выходными сопротивлениями. Существуют специальные операционные усилители, предназначенные для использования только в качестве повторителей. Они обладают улучшенными характеристиками, в основном более высоким быстродействием.
Во многих случаях требуется, чтобы в усилителе происходило усиление только переменных сигналов, причем возможно наличие постоянной составляющей входного сигнала. Для этой цели применяют включение во входной цепи разделительного конденсатора (рис.12.5).
Рис.12.4. Повторитель на ОУ
Рис.12.5. Усилитель переменного тока на ОУ
Резистор RВХ включен для того, чтобы не происходила зарядка конденсатора входным током ОУ и не появлялось дополнительное напряжение смещения на входе. Основной недостаток схемы состоит в том, что резистор RВХ шунтирует собой вход схемы, а входное сопротивление схемы равно сопротивлению резистора RВХ, что гораздо меньше входного сопротивления ОУ. Величина RВХ определяет напряжение смещения на выходе. Для устранения на выходе схемы постоянного напряжения необходимо поставить последовательно с выходом разделительный конденсатор.
Суммирующий и вычитающий усилители
Сумматор на основе ОУ – инвертирующий усилитель с дополнительными входами (рис.12.6). В этой схеме также используются свойства мнимой земли.
Рис.12.6. Суммирующий усилитель
Составляя уравнение баланса токов и полагая, что входы ОУ ток не потребляют, имеем:
IOC = I1 + I2.
Поскольку инвертирующий вход ОУ в этой схеме является мнимой землей, токи можно выразить через напряжения сигналов и сопротивления резисторов следующим образом:
–UВЫХ / RОС= U1 / R1 + U2 / R2,
UВЫХ = –( U1 RОС / R1 + U2 RОС / R2).
Сопротивления резисторов обычно лежит в пределах от 10 до 100 кОм, удобно их выбрать так, чтобы выполнялись равенства RОС = R1 + R2, в этом случае:
UВЫХ = –( U1 + U2 ).
Заметим, что хотя выходной сигнал и равен по величине сумме входных сигналов, все же знак его – обратный, это свойство схем с мнимой землей.
Характерная особенность схемы в том, что входные сигналы не влияют друг на друга.
В схеме дифференциального усилителя (рис. 12.7) входная цепь выполнена так, что подача сигнала обратной связи совмещена с наличием дифференциального входа, фактически эта схема представляет собой комбинацию схем инвертирующего и неинвертирующего усилителей.
Вход UВХ1 является инвертирующим, вход UВХ2 – неинвертирующим. Если вход UВХ2 заземлить, а на вход UВХ1 подать сигнал, то получившаяся схема будет эквивалентна инвертирующему усилителю с коэффициентом усиления напряжения –RОС / R1. Если входы поменять местами, то получится неинвертирующий усилитель с коэффициентом усиления напряжения RОС / R1. Относительное ослабление синфазного сигнала, в принципе, может быть таким же большим, каким оно является у самого ОУ, но на практике оно ограничено допусками на сопротивления резисторов.
Рис.12.7. Дифференциальный усилитель
В случае, если сопротивления всех резисторов в схеме одинаково R1 = R2 = R3 = RОС,
UВЫХ = UВХ2 – UВХ1.
Входное сопротивление схемы по инвертирующему входу равно R1, а по неинвертирующему – R2 + R3, при этом они могут различаться весьма существенно. Но ведь одним из важных применений дифференциального усилителя является подавление с его помощью фона и помех, которые наводятся на проводящих проводах. Если сопротивление источника сигнала не мало, то значительное различие входных сопротивлений становится существенным недостатком.
Обычно бывает можно пожертвовать оптимальными условиями согласования по постоянному току, беря сопротивления такими, чтобы выполнялись равенства: R2+R3=R1; R2/R3=RОС /R1; при этом входные сопротивления выравниваются, а коэффициент подавления синфазной помехи остается большим. Для получения больших значений этого коэффициента используют дифференциальные усилители на нескольких ОУ.