
- •Часть I
- •Тема 1. Физические основы электроники 4
- •Тема 2. Источники вторичного электропитания 69
- •Тема 3. Усилители электрических сигналов 95
- •Тема 4. Импульсные и автогенерирующие устройства 137
- •Тема 5. Цифровая электроника и микропроцессорная техника 163
- •Тема 1. Физические основы электроники
- •1.1. Основные понятия электроники. Электропроводность полупроводников
- •1.2. Электрические переходы
- •1.3. Электронно-дырочный переход
- •1.4. Вольт-амперная характеристика электронно-дырочного перехода
- •1.5. Типы полупроводниковых диодов
- •1.6. Система обозначений полупроводниковых диодов
- •1.7. Транзисторы. Полевые и биполярные транзисторы
- •1.7.1. Устройство полевых транзисторов
- •1.7.2. Принцип действия полевого транзистора с управляющим p-n-переходом
- •1.7.3. Выходные статические характеристики полевого транзистора. Статические характеристики передачи полевого транзистора
- •1.7.4. Полевые транзисторы со встроенным каналом
- •1.7.5. Полевые транзисторы с индуцированным каналом
- •1.7.6. Малосигнальные параметры и система обозначений полевых транзисторов
- •1.7.7. Устройство и схемы включения биполярного транзистора
- •1.7.8. Режимы работы биполярного транзистора
- •1.7.9. Принцип работы биполярного транзистора в активном режиме
- •1.7.10. Параметры биполярного транзистора
- •Система z - параметров
- •Система y - параметров
- •Система h - параметров
- •1.7.11. Статические характеристики биполярных транзисторов
- •1.7.12. Система обозначения биполярных транзисторов
- •Тема 2. Источники вторичного электропитания
- •2.1. Принципы построения и классификация средств электропитания электронных устройств
- •2.2. Основные характеристики ивэп
- •2.3. Структурные схемы ивэп
- •2.4. Электрические фильтры
- •2.4.3. Полосовой lc-фильтр
- •2.4.4. Режекторный lc-фильтр
- •2.5. Выпрямители источников электропитания. Виды выпрямителей и их характеристики
- •2.5.1. Классификация выпрямителей
- •2.5.2. Однополупериодный выпрямитель
- •2.5.3. Двухполупериодный выпрямитель с нулевой точкой
- •2.5.4. Мостовая схема выпрямителя
- •2.5.5. Схема удвоения напряжения
- •2.5.6. Трехфазный выпрямитель
- •Тема 3. Усилители электрических сигналов
- •3.1. Основные понятия об усилителях и классификация усилителей
- •3.2.Основные характеристики и параметры усилителей
- •3.3. Характеристики и параметры усилителей, связанные с искажением сигналов в усилителе
- •3.4.Обратная связь в усилителях. Влияние ос на параметры усилителей
- •Влияние ос на параметры усилителей
- •3.5.Классы усиления транзисторных усилительных каскадов
- •3.6. Методы задания начального режима работы транзистора
- •3.7. Усилитель на биполярном транзисторе с общим эмиттером
- •3.8. Дифференциальный усилитель. Дрейф нуля в ду
- •3.8.1. Операционные усилители. Инвертирующие усилители. Неивертирующие усилители. Суммирующие и вычитающие усилители. Интеграторы
- •Инвертирующий усилитель
- •Неивертирующий усилитель
- •Суммирующий и вычитающий усилители
- •Интеграторы
- •3.9. Выходные усилители мощности
- •Тема 4. Импульсные и автогенерирующие устройства
- •4.1. Генерирующие и импульсные устройства. Передачи информации в импульсном режиме
- •4.2. Электронные ключи. Простейшие формирователи импульсных сигналов
- •4.2.1. Ключевой режим работы транзистора
- •Режим насыщения
- •4.2.2. Компараторы (схемы сравнения)
- •4.2.3. Триггер Шмитта
- •4.2.4. Мультивибраторы
- •4.2.5. Дифференцирующие rc цепи
- •4.2.6. Интегрирующие rc-цепи
- •4.2.7. Симметричный мультивибратор на оу
- •4.2.8. Одновибратор на оу
- •4.3. Генераторы линейно-изменяющегося напряжения (глин) на оу
- •4.3.1. Глин на оу с внешним запуском
- •4.3.2. Глин на оу в автогенераторном режиме.
- •4.4. Генераторы гармонических колебаний. Условия возникновения колебаний
- •4.4.1. Условия возникновения колебаний
- •4.4.2. Генераторы с rc-фазосдвигающими цепочками
- •4.4.3. Генераторы с мостом Вина
- •Тема 5. Цифровая электроника и микропроцессорная техника
- •5.1. Основные логические операции и их практическая реализация
- •5.1.1. Операция "не" (логическое отрицание или "инверсия")
- •5.1.2. Операция "или" (логическое сложение или дизъюнкция)
- •5.1.3. Операция "и" (логическое умножение или конъюнкция)
- •5.2. Типы логических микросхем
- •5.3. Элементы алгебры логики и синтеза комбинационных схем. Формы записи логических уравнений
- •5.3.1. Формы записи логических уравнений
- •5.3.2. Синтез комбинационных логических устройств
- •5.3.3. Реализация логических функций на элементах "и-не" и "или-не"
- •5.4. Интегральные комбинационные схемы
- •5.5. Логические устройства последовательного типа
- •5.5.1. Триггеры
- •5.5.2. Счётчики
- •5.5.3. Регистры
- •5.6. Цифровые запоминающие устройства
- •5.6.1. Структуры запоминающих устройств
- •5.7. Аналого-цифровые и цифро-аналоговые преобразователи
- •5.7.1. Аналого-цифровые преобразователи
3.8.1. Операционные усилители. Инвертирующие усилители. Неивертирующие усилители. Суммирующие и вычитающие усилители. Интеграторы
В настоящее время разработано огромное количество аналоговых интегральных схем (ИС) двух типов – базовые электронные элементы (операционные усилители, компараторы, стабилизаторы напряжения) и специализированные ИС, предназначение для решения одной задачи. На первый взгляд может показаться, что все уже придумано, бери и пользуйся. На самом деле это не так.
На ранних этапах развития электроники «кирпичиками», из которых собирались схемы, являлись транзисторы, диоды, резисторы и другие дискретные элементы. Сейчас «кирпичиками» являются разнообразные ИС. По цене стоимость дискретных элементов и ИС практически сравнялись. Современный этап развития электроники характеризуется тем, что при проектировании электронных средств различного назначения используют не дискретные элементы, а законченные функциональные элементы, выполненные на интегральных схемах. Такой подход позволяет значительно повысить статические, динамические, эксплуатационные и надежностные показатели аппаратуры, существенно удешевить и сократить сроки ее проектирования. Разработка схем фактически сводится к разработке структуры, удовлетворяющей поставленным требованиям, выбору необходимых ИС и согласованию их входных и выходных характеристик.
Применительно к цифровым устройствам выбор ИС достаточно формализован и практически не представляет труда. В то же время выбор и применение аналоговых ИС достаточно специфичны и оставляют большой простор для творчества разработчика. Он должен знать внутреннюю схемотехнику и конструкцию ИС, свойства типовых схем и условия их применения, а также методы быстрой оценки основных характеристик разрабатываемого устройства.
Несмотря на различие элементной базы, функционального назначения и технологии изготовления, основой большинства ИС является схемотехника дифференциального усилителя постоянного тока, на базе, которой выполнены операционные усилители. Дифференциальный усилитель в настоящее время по существу является основным схемотехническим элементом современной интегральной аналоговой электроники. Именно по этой причине интегральные усилители постоянного тока являются наиболее массовым типом аналоговых ИС.
Рассмотрим несколько наиболее распространенных схем на ОУ.
Инвертирующий усилитель
Усилители на ОУ используют отрицательную обратную связь (ООС), поэтому есть несколько простых правил, которые определяют поведение такого усилителя. Следует воспользоваться тремя упрощающими предположениями о свойствах ОУ: коэффициент усиления ОУ без обратной связи и входное сопротивления бесконечно велики, выходное сопротивление равно нулю.
При анализе следует помнить, что большой коэффициент усиления по напряжению ОУ приводит к тому, что изменение напряжения между входами на несколько долей милливольта вызывает изменение выходного напряжения в пределах его полного диапазона. Из этого следует первое правило: ОУ усиливает разность напряжения между входами и за счет внешней схемы ООС передает напряжение с выхода на вход таким образом, что разность напряжений между входами практически равна нулю.
Входное сопротивление различных типов ОУ находится в пределах от мегаом до тысяч мегаом, входные токи – от долей наноампер до пикоампер. Это дает основание сформулировать второе правило: входы операционного усилителя токов не потребляют. Эти правила дают достаточную основу для анализа схем на ОУ. Схема инвертирующего усилителя на ОУ приведена на рис.12.1.
Рис.12.1. Инвертирующий усилитель на ОУ
Анализируя эту схему с учетом сформулированных выше правил, можно показать, что при заземленном неинвертирующем входе ОУ напряжение на инвертирующем входе также равно нулю. Это означает, что падение напряжения на резисторе RОС равно UВЫХ, а падение напряжения на резисторе R1 равно UВХ. Если входные токи ОУ равны нулю, то
UВЫХ / RОС = –UВХ / R1,
коэффициент усиления по напряжению
КU = UВЫХ / UВХ = –RОС / R1.
Знак «минус» показывает, что выходной сигнал инвертирован относительно входного (сдвинут на 180º).
Данная схема является усилителем постоянного тока, АЧХ ее представлена на рис.9.9.
В этой схеме реализована параллельная ООС по напряжению, поскольку сигнал ООС оказывается включенным не последовательно с входным сигналом, а подается параллельно с ним на один и тот же вход.
Как известно, параллельная ООС уменьшает входное сопротивление усилителя. В схеме потенциал точки соединения R1 и RОС всегда равен нулю, а эта точка называется «виртуальный ноль» (мнимая земля). Следовательно, входное сопротивление схемы
RВХ = R1.
Выходное сопротивление схемы мало и равно долям ома.
Таким образом, недостатком схемы является малое входное сопротивление, особенно для усилителей с большим коэффициентом усиления по напряжению, в которых резистор R1, как правило, бывает небольшим.
Достоинством схемы является малое значение синфазного напряжения, практически равного нулю. Тот факт, что коэффициент усиления определяется всего лишь соотношением двух сопротивлений, делает применение инвертирующего усилителя очень гибким.
Практическое использование усилителей на ОУ имеет ряд особенностей. ОУ должен находиться в активном режиме, его входы и выходы не должны быть перегружены. Например, если подать на вход усилителя чересчур большой сигнал, то это приведет к тому, что выходной сигнал станет равным напряжению насыщения (обычно его величина меньше напряжения питания на 2 В).
В схеме ОУ обязательно должны быть предусмотрена цепь обратной связи по постоянному току, в противном случае ОУ обязательно попадет в режим насыщения.
Многие ОУ имеют довольно малое предельно допустимое дифференциальное входное напряжение. Максимальная разность напряжений между инвертирующим и неинвертирующим входами может быть ограничена величиной 5 В для любой полярности напряжения. Если пренебречь этим условием, то возникнут большие входные токи. Из-за наличия входного напряжения смещения, при нулевом напряжении на входе напряжение на выходе равно:
UВЫХ=KUUСМ..
Для усилителя, имеющего коэффициент усиления, равный 100 и входное напряжение смещения 2 мВ, выходное напряжение смещения может достигать значения ±0,2 В. Для решения этой проблемы нужно использовать цепи внешней коррекции нуля (используя ОУ с такими возможностями), выбирать ОУ с малым значением смещения. Если усиление постоянного тока не нужно, то можно использовать разделительные емкости в последовательной цепи передачи входного и выходного сигнала.
Если в инвертирующем усилителе один из входов заземлен, то даже при условии идеальной настройки (UСМ = 0), на выходе усилителя будет присутствовать отличное от нуля выходное напряжение. Это связано с тем, что входной ток смещения IВХ создает падение напряжения на резисторах, которое затем усиливается схемой усилителя. В этой схеме сопротивление со стороны инвертирующего входа определяется резисторами R1║RОС, но ток смещения воспринимается как входной сигнал, подобный току, текущему через R1, а поэтому он порождает смещение выхода UСМ = IСМ RОС.
Для уменьшения ошибок, вызванных входным током смещения, используют включение дополнительного резистора между неинвертирующим входом и общим проводом. Величина этого резистора должна быть равна R2 = R1║RОС. Для приведенного примера R1 = 10 кОм, RОС = 100 кОм, R2 = 9,1 кОм.
Рис.12.2. Усилитель на ОУ с компенсационным резистором
С целью уменьшения токов смещения и их температурных дрейфов в практических схемах входные сопротивления имеют типичное значение от 1 до 100 кОм.
К резисторам обратной связи предъявляется два противоположных требования. Резисторы обратной связи должны быть достаточно большими, тогда они не будут существенно нагружать выход, вместе с тем, если они будут слишком большими, то входной ток смещения будет порождать ощутимые сдвиги. Кроме того, высокое сопротивление в цепи обратной связи повышает восприимчивость схемы к влиянию внешних наводок и увеличивает влияние паразитной емкости. Для ОУ общего назначения обычно выбирают резисторы цепей ООС с сопротивлением от 2 до 100 кОм. Из этого следует, что практическое значение максимального коэффициента усиления инвертирующего усилителя равно 100.