
- •Часть I
- •Тема 1. Физические основы электроники 4
- •Тема 2. Источники вторичного электропитания 69
- •Тема 3. Усилители электрических сигналов 95
- •Тема 4. Импульсные и автогенерирующие устройства 137
- •Тема 5. Цифровая электроника и микропроцессорная техника 163
- •Тема 1. Физические основы электроники
- •1.1. Основные понятия электроники. Электропроводность полупроводников
- •1.2. Электрические переходы
- •1.3. Электронно-дырочный переход
- •1.4. Вольт-амперная характеристика электронно-дырочного перехода
- •1.5. Типы полупроводниковых диодов
- •1.6. Система обозначений полупроводниковых диодов
- •1.7. Транзисторы. Полевые и биполярные транзисторы
- •1.7.1. Устройство полевых транзисторов
- •1.7.2. Принцип действия полевого транзистора с управляющим p-n-переходом
- •1.7.3. Выходные статические характеристики полевого транзистора. Статические характеристики передачи полевого транзистора
- •1.7.4. Полевые транзисторы со встроенным каналом
- •1.7.5. Полевые транзисторы с индуцированным каналом
- •1.7.6. Малосигнальные параметры и система обозначений полевых транзисторов
- •1.7.7. Устройство и схемы включения биполярного транзистора
- •1.7.8. Режимы работы биполярного транзистора
- •1.7.9. Принцип работы биполярного транзистора в активном режиме
- •1.7.10. Параметры биполярного транзистора
- •Система z - параметров
- •Система y - параметров
- •Система h - параметров
- •1.7.11. Статические характеристики биполярных транзисторов
- •1.7.12. Система обозначения биполярных транзисторов
- •Тема 2. Источники вторичного электропитания
- •2.1. Принципы построения и классификация средств электропитания электронных устройств
- •2.2. Основные характеристики ивэп
- •2.3. Структурные схемы ивэп
- •2.4. Электрические фильтры
- •2.4.3. Полосовой lc-фильтр
- •2.4.4. Режекторный lc-фильтр
- •2.5. Выпрямители источников электропитания. Виды выпрямителей и их характеристики
- •2.5.1. Классификация выпрямителей
- •2.5.2. Однополупериодный выпрямитель
- •2.5.3. Двухполупериодный выпрямитель с нулевой точкой
- •2.5.4. Мостовая схема выпрямителя
- •2.5.5. Схема удвоения напряжения
- •2.5.6. Трехфазный выпрямитель
- •Тема 3. Усилители электрических сигналов
- •3.1. Основные понятия об усилителях и классификация усилителей
- •3.2.Основные характеристики и параметры усилителей
- •3.3. Характеристики и параметры усилителей, связанные с искажением сигналов в усилителе
- •3.4.Обратная связь в усилителях. Влияние ос на параметры усилителей
- •Влияние ос на параметры усилителей
- •3.5.Классы усиления транзисторных усилительных каскадов
- •3.6. Методы задания начального режима работы транзистора
- •3.7. Усилитель на биполярном транзисторе с общим эмиттером
- •3.8. Дифференциальный усилитель. Дрейф нуля в ду
- •3.8.1. Операционные усилители. Инвертирующие усилители. Неивертирующие усилители. Суммирующие и вычитающие усилители. Интеграторы
- •Инвертирующий усилитель
- •Неивертирующий усилитель
- •Суммирующий и вычитающий усилители
- •Интеграторы
- •3.9. Выходные усилители мощности
- •Тема 4. Импульсные и автогенерирующие устройства
- •4.1. Генерирующие и импульсные устройства. Передачи информации в импульсном режиме
- •4.2. Электронные ключи. Простейшие формирователи импульсных сигналов
- •4.2.1. Ключевой режим работы транзистора
- •Режим насыщения
- •4.2.2. Компараторы (схемы сравнения)
- •4.2.3. Триггер Шмитта
- •4.2.4. Мультивибраторы
- •4.2.5. Дифференцирующие rc цепи
- •4.2.6. Интегрирующие rc-цепи
- •4.2.7. Симметричный мультивибратор на оу
- •4.2.8. Одновибратор на оу
- •4.3. Генераторы линейно-изменяющегося напряжения (глин) на оу
- •4.3.1. Глин на оу с внешним запуском
- •4.3.2. Глин на оу в автогенераторном режиме.
- •4.4. Генераторы гармонических колебаний. Условия возникновения колебаний
- •4.4.1. Условия возникновения колебаний
- •4.4.2. Генераторы с rc-фазосдвигающими цепочками
- •4.4.3. Генераторы с мостом Вина
- •Тема 5. Цифровая электроника и микропроцессорная техника
- •5.1. Основные логические операции и их практическая реализация
- •5.1.1. Операция "не" (логическое отрицание или "инверсия")
- •5.1.2. Операция "или" (логическое сложение или дизъюнкция)
- •5.1.3. Операция "и" (логическое умножение или конъюнкция)
- •5.2. Типы логических микросхем
- •5.3. Элементы алгебры логики и синтеза комбинационных схем. Формы записи логических уравнений
- •5.3.1. Формы записи логических уравнений
- •5.3.2. Синтез комбинационных логических устройств
- •5.3.3. Реализация логических функций на элементах "и-не" и "или-не"
- •5.4. Интегральные комбинационные схемы
- •5.5. Логические устройства последовательного типа
- •5.5.1. Триггеры
- •5.5.2. Счётчики
- •5.5.3. Регистры
- •5.6. Цифровые запоминающие устройства
- •5.6.1. Структуры запоминающих устройств
- •5.7. Аналого-цифровые и цифро-аналоговые преобразователи
- •5.7.1. Аналого-цифровые преобразователи
2.4.4. Режекторный lc-фильтр
В заграждающих (режекторных) фильтрах (рис. 2.4.6. а) также используются резонансы напряжений и токов, но в отличие от ПФ параллельный колебательный контур включен в продольное плечо, а последовательный – в поперечное.
Рис. 2.4.6. Схема режекторного LC-фильтра (а) и его АЧХ (б).
Резонансная частота контура определяется выражением
.
При резонансе сопротивление продольного плеча оказывается максимальным, а поперечного – минимальным, что соответствует наибольшему затуханию (рис. 2.4.6. б). Для электрических колебаний с частотами, отличающимися от резонансной, сопротивление продольного плеча уменьшается, а поперечного – увеличивается, в результате чего происходит увеличение коэффициента передачи фильтра.
2.4.5. RC-фильтр нижних частот
На частотах до нескольких десятков килогерц применяются RC-фильтры, состоящие из резисторов и конденсаторов. В качестве фильтра нижних частот (ФНЧ) используется одно или несколько включённых последовательно RC-звеньев, ёмкость включается в поперечное звено (рис. 2.4.7. а).
Рис. 2.4.7. Схема пассивного RC-фильтра нижних частот (а) и его АЧХ (б).
С увеличением частоты сопротивление конденсатора уменьшается, что приводит к уменьшению коэффициента передачи (рис. 2.4.7. б).
2.4.6. RC-фильтр верхних частот
В RC-фильтре верхних частот (ФВЧ) конденсатор включён в продольное плечо (рис. 2. 4.8. а). Поэтому на низких частотах его сопротивление значительно больше сопротивление резистора параллельного плеча и коэффициент передачи мал. С увеличением частоты сопротивление конденсатора уменьшается, что приводит к увеличению коэффициента передачи (рис. 2.4.8. б).
Рис. 2. 4.8. Схема пассивного RC-фильтра верхних частот (а) и его АЧХ (б).
Рассмотренные ФНЧ и ФВЧ, состоящие из нескольких однотипных звеньев RC, называются цепочечными RC-фильтрами.
В качестве полосового RC-фильтра на низких частотах применяется Г-образный RC-фильтр (рис. 2.4.9. а).
Рис. 2.4.9. Схема пассивного полосового RC-фильтра (а) и его АЧХ (б).
На некоторой частоте fр, называемой квазирезонансной, коэффициент передачи такого фильтра имеет наибольшее значение, равное 1/3 , и уменьшается при отклонении частоты входного напряжения от fр (рис. 2.4.9. б).
Роль заграждающих фильтров (ЗФ) на низких частотах выполняют Т-образные (рис. 2.4.10.) и двойной Т-образный (рис. 2.4.11. а) фильтры. У этих фильтров на квазирезонансной частоте fр коэффициент передачи имеет минимальное значение и увеличивается при отклонении частоты входного напряжения от fр (рис. 2.4.11. б).
Рис. 2.4.10. Схемы заграждающих Т-образных RC-фильтров (q – коэффициент, равный целому положительному числу).
Рис. 2.4.11. Схема заграждающего двойного Т-образного RC-фильтра (а) и его АЧХ (б).
2.5. Выпрямители источников электропитания. Виды выпрямителей и их характеристики
Выпрямителем называется устройство, предназначенное для преобразования переменного напряжения в постоянное. Основное назначение выпрямителя заключается в сохранении направления тока в нагрузке при изменении полярности приложенного напряжения. Выпрямитель можно рассматривать как один из типов инверторов напряжения. Обобщенная структурная схема выпрямителя приведена на рис. 2.5.1.
Рис. 2.5.1. Обобщенная структурная схема выпрямителя
В состав выпрямителя могут входить: силовой трансформатор СТ, вентильный блок ВБ, фильтрующее устройство ФУ и стабилизатор напряжения СН. Трансформатор СТ выполняет следующие функции: преобразует значение напряжения сети, обеспечивает гальваническую изоляцию нагрузки от силовой сети, преобразует количество фаз силовой сети. В импульсных источниках питания трансформатор обычно отсутствует, так как его функции выполняет высокочастотный инвертор.
Вентильный блок ВБ является основным звеном выпрямителя, обеспечивая однонаправленное протекание тока в нагрузке. В качестве вентилей могут использоваться электровакуумные, газоразрядные или полупроводниковые приборы, обладающие односторонней электропроводностью, например, диоды, тиристоры, транзисторы и др. Идеальные вентильные элементы должны пропускать ток только в одном (прямом) направлении и совсем не пропускать его в другом (обратном) направлении. Реальные вентильные элементы отличаются от идеальных, прежде всего тем, что они пропускают некоторый ток в обратном направлении и имеют падение напряжения при протекании прямого тока. Это сказывается на снижении КПД вентильного блока и снижении эффективности выпрямителя в целом.
Фильтрующее устройство ФУ используется для ослабления пульсаций выходного напряжения. В качестве фильтрующего устройства обычно используются фильтры нижних частот (ФНЧ), выполненные на пассивных R, L, С элементах или, иногда, с применением активных элементов- транзисторов, операционных усилителей и пр. Качество ФУ оценивают по его способности увеличивать коэффициент фильтрации q, равный отношению коэффициентов пульсации на входе и выходе фильтра.
Стабилизатор напряжения СН предназначен для уменьшения влияния внешних воздействии: изменения напряжения питающей сети, температуры окружающей среды, изменения нагрузки и др.,- на выходное напряжение выпрямителя. Стабилизатор напряжения можно установить не только на выходе выпрямителя, но и на его входе. Если к стабильности выходного напряжения не предъявляется особых требований, то стабилизатор может быть или совсем исключен или его функции переданы другим узлам. Например, в импульсных источниках питания функции стабилизатора может выполнять регулируемый инвертор (РИ) или регулируемый вентильный блок.
Кроме основных узлов, в состав выпрямителя могут входить различные вспомогательные элементы и узлы, предназначенные для повышения его надежности: узлы контроля и автоматики, узлы защиты и др., например, узлы автоматического переключения напряжения питающей сети 110-220 В.