
- •Часть I
- •Тема 1. Физические основы электроники 4
- •Тема 2. Источники вторичного электропитания 69
- •Тема 3. Усилители электрических сигналов 95
- •Тема 4. Импульсные и автогенерирующие устройства 137
- •Тема 5. Цифровая электроника и микропроцессорная техника 163
- •Тема 1. Физические основы электроники
- •1.1. Основные понятия электроники. Электропроводность полупроводников
- •1.2. Электрические переходы
- •1.3. Электронно-дырочный переход
- •1.4. Вольт-амперная характеристика электронно-дырочного перехода
- •1.5. Типы полупроводниковых диодов
- •1.6. Система обозначений полупроводниковых диодов
- •1.7. Транзисторы. Полевые и биполярные транзисторы
- •1.7.1. Устройство полевых транзисторов
- •1.7.2. Принцип действия полевого транзистора с управляющим p-n-переходом
- •1.7.3. Выходные статические характеристики полевого транзистора. Статические характеристики передачи полевого транзистора
- •1.7.4. Полевые транзисторы со встроенным каналом
- •1.7.5. Полевые транзисторы с индуцированным каналом
- •1.7.6. Малосигнальные параметры и система обозначений полевых транзисторов
- •1.7.7. Устройство и схемы включения биполярного транзистора
- •1.7.8. Режимы работы биполярного транзистора
- •1.7.9. Принцип работы биполярного транзистора в активном режиме
- •1.7.10. Параметры биполярного транзистора
- •Система z - параметров
- •Система y - параметров
- •Система h - параметров
- •1.7.11. Статические характеристики биполярных транзисторов
- •1.7.12. Система обозначения биполярных транзисторов
- •Тема 2. Источники вторичного электропитания
- •2.1. Принципы построения и классификация средств электропитания электронных устройств
- •2.2. Основные характеристики ивэп
- •2.3. Структурные схемы ивэп
- •2.4. Электрические фильтры
- •2.4.3. Полосовой lc-фильтр
- •2.4.4. Режекторный lc-фильтр
- •2.5. Выпрямители источников электропитания. Виды выпрямителей и их характеристики
- •2.5.1. Классификация выпрямителей
- •2.5.2. Однополупериодный выпрямитель
- •2.5.3. Двухполупериодный выпрямитель с нулевой точкой
- •2.5.4. Мостовая схема выпрямителя
- •2.5.5. Схема удвоения напряжения
- •2.5.6. Трехфазный выпрямитель
- •Тема 3. Усилители электрических сигналов
- •3.1. Основные понятия об усилителях и классификация усилителей
- •3.2.Основные характеристики и параметры усилителей
- •3.3. Характеристики и параметры усилителей, связанные с искажением сигналов в усилителе
- •3.4.Обратная связь в усилителях. Влияние ос на параметры усилителей
- •Влияние ос на параметры усилителей
- •3.5.Классы усиления транзисторных усилительных каскадов
- •3.6. Методы задания начального режима работы транзистора
- •3.7. Усилитель на биполярном транзисторе с общим эмиттером
- •3.8. Дифференциальный усилитель. Дрейф нуля в ду
- •3.8.1. Операционные усилители. Инвертирующие усилители. Неивертирующие усилители. Суммирующие и вычитающие усилители. Интеграторы
- •Инвертирующий усилитель
- •Неивертирующий усилитель
- •Суммирующий и вычитающий усилители
- •Интеграторы
- •3.9. Выходные усилители мощности
- •Тема 4. Импульсные и автогенерирующие устройства
- •4.1. Генерирующие и импульсные устройства. Передачи информации в импульсном режиме
- •4.2. Электронные ключи. Простейшие формирователи импульсных сигналов
- •4.2.1. Ключевой режим работы транзистора
- •Режим насыщения
- •4.2.2. Компараторы (схемы сравнения)
- •4.2.3. Триггер Шмитта
- •4.2.4. Мультивибраторы
- •4.2.5. Дифференцирующие rc цепи
- •4.2.6. Интегрирующие rc-цепи
- •4.2.7. Симметричный мультивибратор на оу
- •4.2.8. Одновибратор на оу
- •4.3. Генераторы линейно-изменяющегося напряжения (глин) на оу
- •4.3.1. Глин на оу с внешним запуском
- •4.3.2. Глин на оу в автогенераторном режиме.
- •4.4. Генераторы гармонических колебаний. Условия возникновения колебаний
- •4.4.1. Условия возникновения колебаний
- •4.4.2. Генераторы с rc-фазосдвигающими цепочками
- •4.4.3. Генераторы с мостом Вина
- •Тема 5. Цифровая электроника и микропроцессорная техника
- •5.1. Основные логические операции и их практическая реализация
- •5.1.1. Операция "не" (логическое отрицание или "инверсия")
- •5.1.2. Операция "или" (логическое сложение или дизъюнкция)
- •5.1.3. Операция "и" (логическое умножение или конъюнкция)
- •5.2. Типы логических микросхем
- •5.3. Элементы алгебры логики и синтеза комбинационных схем. Формы записи логических уравнений
- •5.3.1. Формы записи логических уравнений
- •5.3.2. Синтез комбинационных логических устройств
- •5.3.3. Реализация логических функций на элементах "и-не" и "или-не"
- •5.4. Интегральные комбинационные схемы
- •5.5. Логические устройства последовательного типа
- •5.5.1. Триггеры
- •5.5.2. Счётчики
- •5.5.3. Регистры
- •5.6. Цифровые запоминающие устройства
- •5.6.1. Структуры запоминающих устройств
- •5.7. Аналого-цифровые и цифро-аналоговые преобразователи
- •5.7.1. Аналого-цифровые преобразователи
1.7.11. Статические характеристики биполярных транзисторов
Обычно анализируют входные и выходные характеристики биполярного транзистора в схемах с общей базой и общим эмиттером. Для определенности будем рассматривать p-n-p-транзистор.
Схема с общей базой
Семейство входных характеристик схемы с ОБ представляет собой зависимость IЭ = f(UЭБ) при фиксированных значениях параметра UКБ - напряжения на коллекторном переходе (см. рис. 1.7.11.1.).
а) |
б) |
Рис. 1.7.11.1. Входные (а) и выходные (б) характеристики транзистора в схеме включения с ОБ |
При UКБ = 0 характеристика подобна ВАХ p-n-перехода. С ростом обратного напряжения UКБ (UКБ < 0 для p-n-p-транзистора) вследствие уменьшения ширины базовой области происходит смещение характеристики вверх: IЭ растет при выбранном значении UЭБ. Если поддерживается постоянным ток эмиттера (IЭ = const), т.е. градиент концентрации дырок в базовой области остается прежним, то необходимо понизить напряжение UЭБ, (характеристика сдвигается влево). Следует заметить, что при UКБ < 0 и UЭБ = 0 существует небольшой ток эмиттера IЭ0, который становится равным нулю только при некотором обратном напряжении UЭБ0.
Семейство выходных характеристик схемы ОБ представляет собой зависимости IК = f(UКБ) при заданных значениях параметра IЭ (рисунок 1.7.11.1. б)).
Выходная характеристика p-n-p-транзистора при IЭ = 0 и обратном напряжении UКБ < 0 подобна обратной ветви p-n-перехода (диода). При этом IК = IКБО, т. е. характеристика представляет собой обратный ток коллекторного перехода, протекающий в цепи коллектор - база. При IЭ > 0 основная часть инжектированных в базу носителей (дырок в p-n-p -транзисторе) доходит до границы коллекторного перехода и создает коллекторный ток при UКБ = 0 в результате ускоряющего действия контактной разности потенциалов. Ток можно уменьшить до нуля путем подачи на коллекторный переход прямого напряжения определенной величины. Этот случай соответствует режиму насыщения, когда существуют встречные потоки инжектированных дырок из эмиттера в базу и из коллектора в базу. Результирующий ток станет равен нулю, когда оба тока одинаковы по величине (например, точка А' на рисунке1.7.11.1. б). Чем больше заданный ток IЭ, тем большее прямое напряжение UКБ требуется для получения IК = 0.
Область в первом квадранте на рисунке 1.7.11.1. б), где UКБ < 0 (обратное) и параметр IЭ > 0 (что означает прямое напряжение UЭБ) соответствует нормальному активному режиму (НАР). Значение коллекторного тока в НАР определяется формулой:
IК = άIЭ + IКБО , где ά- интегральный коэффициент передачи тока.
Выходные характеристики смещаются вверх при увеличении параметра IЭ . В идеализированном транзисторе интегральный коэффициент передачи тока ά можно считать постоянным, не зависящим от значения |UКБ|. Следовательно, в идеализированном биполярном транзисторе выходные характеристики оказываются горизонтальными (IК = const). Реально же при росте |UКБ| приводит к уменьшению потерь на рекомбинацию и росту ά. Так как значение ά близко к единице, то относительное увеличение а очень мало и может быть обнаружено только измерениями. Поэтому отклонение выходных характеристик от горизонтальных линий вверх “на глаз” не заметно (на рисунке (б) не соблюден масштаб).
Схема с общим эмиттером
Семейство входных характеристик схемы с ОЭ представляет собой зависимости IБ = f(UБЭ), причем параметром является напряжение UКЭ (рисунок 1.7.11.2. а)).
Для p-n-p транзистора отрицательное напряжение UБЭ (UБЭ < 0) означает прямое включение эмиттерного перехода, так как UЭБ = -UБЭ > 0. Если при этом UКЭ = 0 (потенциалы коллектора и эмиттера одинаковы), то и коллекторный переход будет включен в прямом направлении:
U КБ = UКЭ + UЭБ = UЭБ > 0.
Поэтому входная характеристика при UКЭ =0 будет соответствовать режиму насыщения (РН), а ток базы равным сумме базовых токов из-за одновременной инжекции дырок из эмиттера и коллектора. Этот ток, естественно, увеличивается с ростом прямого напряжения UЭБ, так как оно приводит к усилению инжекции в обоих переходах (UКБ = UЭБ) и соответствующему возрастанию потерь на рекомбинацию, определяющих базовый ток. Вторая характеристика (на рисунке 1.7.11.2. а)) относится к нормальному активному режиму, для получения которого напряжение UКЭ должно быть в p-n-p транзисторе отрицательным и по модулю превышать напряжение UЭБ..
а) |
б) |
Рис. 1.7.11.2. Входные (а) и выходные (б) характеристики транзистора в схеме включения с ОЭ |
В этом случае:
UКБ = UКЭ + UЭБ = UКЭ - UБЭ < 0.
Формально ход входной характеристики в НАР можно объяснить с помощью выражения:
IБ =(1 - ά)IЭ - IКБО.
При малом напряжении UБЭ инжекция носителей практически отсутствует (IЭ = 0) и ток IБ = -I КБО, т.е. отрицателен. Увеличение прямого напряжения на эмиттерном переходе UЭБ = -UБЭ вызывает рост IЭ и величины (1 - ά) IЭ. Когда (1 - ά) IЭ = IКБО, ток IБ = 0. При дальнейшем роете UБЭ (1 - ά) IЭ > IКБО и IБ меняет направление и становится положительным (IБ > 0) и сильно зависящим от напряжения перехода. Влияние UКЭ на IБ в НАР можно объяснить тем, что рост |U КЭ| означает рост |UКБ| и, следовательно, уменьшение ширины базовой области. Последнее будет сопровождаться снижением потерь на рекомбинацию, т.е. уменьшением тока базы (смещение характеристики незначительно вниз).
Семейство выходных характеристик схемы с ОЭ представляет собой зависимости IК = f(UКЭ) при заданном параметре IБ (рисунок 1.7.11.2. б)). Крутые начальные участки характеристик относятся к режиму насыщения, а участки с малым наклоном - к нормальному активному режиму. Переход от первого режима ко второму происходит при значениях |UКЭ|, превышающих |UБЭ|. На характеристиках в качестве параметра берется не напряжение UБЭ, а входной ток IБ. Поэтому о включении эмиттерного перехода приходится судить по значению тока IБ, который связан с входной характеристикой (на рисунке 1.7.11.2. а)). Для увеличения IБ необходимо увеличивать |UБЭ|, следовательно, и граница между режимом насыщения и нормальным активным режимом должна сдвигаться в сторону больших значений.
Если параметр IБ = 0 (“обрыв” базы), то
I К = IКЭО = (β + 1 ) IКБО,
где β- статический коэффициент передачи тока базы
В схеме с ОЭ можно получить I = IКБО, если задать отрицательный ток IБ = -IКБО. Выходная характеристика с параметром I Б = -IКБО может быть принята за границу между НАР и режимом отсечки (РО). Однако часто за эту границу условно принимают характеристику с параметром IБ = 0. Наклон выходных характеристик в нормальном активном режиме в схеме с общим эмиттером во много раз больше, чем в схеме с общей базой (h22Э » βh 22Б) . В схеме с общим эмиттером увеличение UКЭ, а следовательно и UКБ сопровождается уменьшением тока базы, а он по определению выходной характеристики должен быть неизменным. Для восстановления тока базы приходится регулировкой напряжения UБЭ увеличивать ток эмиттера, а это вызывает прирост тока коллектора ΔIК, т.е. увеличение выходной проводимости (в схеме с ОБ ток IЭ при снятии выходной характеристики поддерживается неизменным).