
- •Содержание
- •Общая характеристика курса лекций «история развития и применения эм»
- •1. Цели и задачи изучения дисциплины
- •Всего часов на самостоятельную работу 30
- •2. Лабораторный практикум
- •Лекция № 1. История возникновения и совершенствования эм. Классификация энергонасыщенных материалов (эм). Перспективы совершенствования эм
- •Классификация эм Основные виды классификаций эм
- •Инициирующие вв
- •Классификация ивв по инициирующей способности:
- •1.Инициирующие вв
- •2. Псевдоинициирующие вв
- •Бризантные вв
- •Классификация бвв по химическому строению
- •Классификация эм по направлению применения
- •Промышленные взрывчатые вещества
- •Наиболее распространенные пвв
- •Перспективы совершенствования эм
- •Новые индивидуальные мощные вв
- •Лекция № 2. Основные формы взрывчатого превращения эм. Горение
- •2) Скорость реакции;
- •3) Способность реакции к самораспространению.
- •4) Образование газов
- •Горение эм
- •1. Путем нагрева всей газовой смеси.
- •1. Примеси.
- •Лекция № 3 зависимость скорости горения от различных факторов
- •Горение конденсированных взрывчатых систем
- •Зависимость скорости горения от различных факторов
- •1.Бомба постоянного давления (бомба Кроуфорда).
- •2.Манометрическая бомба.
- •3. Современные методы измерения и обработки параметров горения энергетических материалов
- •Переход горения в детонацию
- •Лекция № 4 детонация, условия её распространения. Зависимость скорости детонации от различных факторов
- •1) Химическое строение и химический состав вв.
- •2) Плотность.
- •3) Температура и давление.
- •4) Примеси.
- •5) Диаметр.
- •1) Определение критического диаметра
- •2) Определение скорости детонации.
- •4) Оценка давлений в ударных и детонационных волнах.
- •Классификация начальных импульсов
- •1) Минимальный инициирующий заряд ивв
- •1) Химическая структура вв.
- •2) Физические характеристики вв.
- •3) Влияние примесей.
- •Основные формы совершаемой работы при взрыве.
- •Лекция № 7 практические методы определения работоспособности и бризантности. Способы ведения взрывных работ
- •Метод баллистической мортиры.
- •Метод оценки работоспособности по воронке выброса.
- •Проба Гесса.
- •1. Сварка взрывом
- •2. Штамповка взрывом
- •3. Взрывные установки
- •4. Ядерные взрывы
- •Способы ведения взрывных работ
- •О гневой способ взрывания
- •2. Электрический способ взрывания
- •3. Электроогневой способ взрывания
- •4 Рис. 45. Комбинированный способ ведения взрывных работ . Комбинированный способ ведения взрывных работ
- •Синв Лекция № 8 Ведение взрывных работ с применением неэлектрических систем инициирования с низкоэнергетическими проводниками сигнала.
- •Система «Нонель»
- •1. Капсюли-детонаторы кд-8с,
- •1.Электродетонаторы мнгновенного действия
- •2. Электродетонаторы короткозамедленного и замедленного действия
- •5. Электродетонаторы высоковольтные
- •Список литературы по дисциплине Основная литература
- •Дополнительная литература
Лекция № 4 детонация, условия её распространения. Зависимость скорости детонации от различных факторов
В 1881 году французскими учеными было сделано открытие детонации в газах (распространение процесса горения в газах со сверхзвуковыми скоростями 2÷3 км/с. Этот быстрый процесс горения был назван «фальшивым горением», или детонацией (от французского «Detonner»: фальшивить, звучать не в тон).
Детонация - устойчивая форма взрывчатого превращения ВМ, самораспространяющийся физико-химический процесс, механизмом передачи энергии которого является ударная волна.
Структура детонационной волны
В отличие от ударной волны детонационная волна распространяется с постоянной скоростью. Это объясняется тем, что уравнение сохранения энергии детонационной волны имеет вид:
EJ-E0=½(PJ+P0)(V0-Vj)+QV
где: QV – теплота химических реакций.
Первое слагаемое – изменение внутренней энергии вследствие сжатия (характерно для ударной волны); второе слагаемое – изменение внутренней энергии за счет химического превращения системы.
Остальные закономерности выведенные для ударной волны (закон сохранения массы, количества движения) справедливы для детонационной волны.
Параметры с индексом j принадлежат продуктам детонации в плоскости Чепмена-Жуге.
В структуре детонационной волны:
→W →D W0=0
-
Продукты детонации
Зона химической реакции
Исходное ВВ
J
Поверхность, разделяющая зону химической реакции и продуктов детонации при стационарной детонации называются поверхностью Чепмена-Жуге.
Зельдович и другие ученые одновременно теоретически рассчитали существование области повышенных давлений – химического пика. Причем Р1=2Рj
Учитывая, что Pj»P0.
Основные параметры детонационной волны описываются следующими зависимостями:
D=Wj+Cj
; Pj=
Где
К – показатель изоэнтропы К
ρ
Энергетические характеристики детонации зависят от теплоты взрыва и количества газообразных продуктов детонации, их средней молекулярной массы: для идеальных газов:
D=
Для конденсированных ВВ существует целый ряд приближенных методов.
Например, по методу Авакяна:
D1,6=643
м/с
Возбуждение и распространение детонации в конденсированном ВВ
Механизм возбуждения детонации ударной волной заключается в следующем. При проникновении ударной волны в заряде ВВ создается зона сжатия, в которой возникает экзотермическая реакция. Для неоднородных ВВ наиболее высокая скорость разложения вещества имеет место в локальных “горячих” точках.
Причинами их возникновения могут быть:
трение между кристаллами ВВ или твердыми частицами;
вязкостный разогрев в результате быстрого течения вещества;
трение на поверхности сдвига, под действием касательных напряжений;
взаимодействие косых ударных волн, возникших из-за неоднородности системы;
адиабатическое сжатие газовых включений образовавшиеся в горячих точках очага разложения укрупняются и объединяются.
Выделяющаеся в них энергия посредством волн сжатия идет на усиление фронта ударной волны.
Инициирование однородных ВВ затруднено и может происходить либо преимущественно в результате гомогенного разогрева вещества, либо механически. Химическое превращение может быть обусловлено непосредственно деформацией ВВ во фронте ударной волны за счет быстрой резонансной диссоциации молекул. Такое превращение характерно для деформации в монокристаллах при высоких скоростях 3-5 км/с. механическое инициирование реакции, с выделением тепла, создает условия и для термического распада ВВ. поэтому механизм всегда смешанный. При детонации мощных ВВ в результате резонансной диссоциации в области химпика образуется зона холодной плазмы – (заряженные частицы), которые энергично вступают во взаимодействие.
Возбуждение детонации возможно только при одновременном выполнении двух условий:
1. Давление в инициирующей волне должно быть больше некоторого критического значения Ркр.
2. Диаметр заряда ВВ должен быть больше критического значения dкр..
Зависимость скорости детонации от различных факторов.