Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
метод для зо 2008.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
5.01 Mб
Скачать

Тема 12. Кратные интегралы. Криволинейный интеграл.

Пискунов, гл. XIV, §1—3, упр. 1 – 6, 8—16; §4, упр. 24—29, 31 — 36; §5, упр. 18—20, 38—40; § 7, упр. 43—47; § 8—10, упр. 51—54, 57, 64; § 11—14, упр. 65—68. Гл. XV, § 1—2 упр. 1—5. Разберите решения задачи 28 из данного пособия.

Задача 28. Дан интеграл

Т ребуется:

1) построить на плоскости хОу область интегрирования D;

2) изменить порядок интегрирования;

3) вычислить площадь области D при заданном и измененном порядке интегрирования.

Решение:

1. Пределы внешнего интеграла по переменной х — числа 1 и 3 — указывают на то, что область D ограничена слева прямой х = 1 и справа прямой х = 3.

Пределы внутреннего интеграла по переменной у указывают на то, что область D ограничена снизу параболой и сверху прямой Построив эти линии на отрезке [1; 3], получим область D (рис. 12).

2. Чтобы изменить порядок интегрирования, установим пределы интегрирования для внешнего интеграла по переменной у. Как видно из рис. 12 наименьшее значение, которое принимает у в области D, равно 1 в точке А(1; 1), а наибольшее значение равно 5 в точке В(3; 5). Следовательно, внешний интеграл по переменной у будет иметь пределы: 1 (нижний предел) и 5 (верхний предел).

Определим пределы для внутреннего интеграла по переменной х.

Из уравнения прямой получаем нижний предел.

Из уравнения параболы получаем – верхний предел. Таким образом,

3. Вычислим площадь области D при заданном порядке интегрирования:

4. Вычислим площадь области D при измененном порядке интегрирования:

Тема 13. Ряды и их приложения.

Минорский№2422, 2425, 2432, 2438, 2444, 2470, 2473, 2492, 2525, 2533.

Разберите решения задач 29-31 из данного пособия.

Задача 29. Найти область сходимости степенного ряда .

Решение: Данный степенной ряд можно записать так:

Применяем признак Даламбера:

Ряд будет сходиться для тех значений х, для которых .

Определим сходимость на концах интервала. При х= –2/3 ряд примет вид:

Этот ряд является знакочередующимся; его общий член по абсолютному значению стремится к нулю при . По признаку Лейбница о сходимости знакочередующихся рядов заключаем, что этот ряд сходится. Следовательно, значение х = - 2/3 принадлежит области сходимости данного ряда.

Подставив х = 2/3, получим

Этот ряд расходится, так как каждый член этого ряда начиная со второго больше соответствующего члена гармонического ряда. Следовательно, значение х = 2/3 не принадлежит области сходимости данного ряда. Таким образом, – область сходимости исследуемого ряда.

Задача 30. Вычислить интеграл с точностью до 0,001.

Решение: Предварительно представим подынтегральную функцию в виде степенного ряда. Используя известное разложение в степенной ряд Маклорена функции sinx, имеем:

, тогда

Мы получили знакочередующийся ряд, который удовлетворяет условиям теоремы Лейбница. Так как в полученном ряде четвертый член по абсолютному значению меньше 0,001, то ограничиваемся только первыми тремя членами.

Задача 31. Найти первые три (отличные от нуля) члена разложения в степенной ряд Маклорена функции у(х), являющейся частным решением дифференциального уравнения если у(0)=1.

Решение: Положим, что у(х) является решением данного дифференциального уравнения при указанных начальных условиях. Если у(х) допускает разложение в ряд Маклорена, то имеем:

(1)

Свободный член разложения (1), то есть у(0), дан по условию. Чтобы найти значения нужно данное уравнение последовательно дифференцировать по переменной х и затем вычислять значения производных при х = 0.

Значение получаем, подставив начальное условие в дифференциальное уравнение

Подставив найденные значения производных при х = 0 в (1), получим разложение искомого частного решения заданного уравнения:

Ответ: