
- •Міністерство освіти і науки україни
- •Моделювання електромеханічних систем методичні вказівки
- •Частина 2
- •Варіанти завдань
- •Послідовність виконання
- •Створити у командному вікні програми MatLab заголовок лабораторного заняття, указавши варіант завдання.
- •Знайти рішення засобами MatLab. Занести в протокол лабораторного заняття отриманні значення.
- •Файл зберегти як документ Word. Варіанти завдань електричної схеми
- •Значення параметрів електричних схем
- •Контрольні питання
- •Теоретичні відомості до лабораторного заняття № 3 Загальні поняття процесу аналізу математичних моделей в режимі статики
- •Приклад виконання завдання 1
- •Приклад виконання завдання 2
- •Лабораторне заняття № 4 Тема «Отримання математичної моделі за результатами експериментальних досліджень»
- •Послідовність виконання
- •Послідовність виконання
- •Послідовність виконання
- •Варіанти завдань*)
- •Контрольні питання
- •Теоретичні відомості до лабораторного заняття № 4 Загальна характеристика експериментально-статистичного моделювання
- •Методи статистичного аналізу
- •Особливості обробки результатів пфе типу 2n з паралельними дослідами в одній точці факторного простору
- •Приклади виконання лабораторного заняття № 4 Приклад 1.
- •Приклад 2.
- •Література
- •Додатки
- •Значення критерію Кохрена gt (0,05, f1, f2)
- •Значення критерію Фішера ft(0,05, fag, f0);
Методи статистичного аналізу
Метод
найгіршого випадку
–
використовується для оцінки впливу
змінювань зовнішніх параметрів на
розкид вихідних, оскільки правильне
функціонування об’єкту, що проектується,
повинне забезпечуватися при будь-яких
значеннях зовнішніх параметрів усередині
заданих діапазонів. Як початкові дані
вказуються максимально можливі відхилення
елементів
вектора зовнішніх параметрів Q
від номінальних значень. Ця інформація
завжди є в технічному завданні (ТЗ) на
проектування.
Найгірший випадок за і-м вихідним параметром yi відповідає максимальним відхиленням усіх елементів вектора Q від номінальних значень Qном у бік погіршення вихідного параметра yi з точки зору вимог ТЗ. Умови працездатності за вихідним параметром, які вказано в ТЗ, представляються у вигляді
yi < TTi або yi > ТТi,
де ТТi – технічна вимога на параметр.
Отже,
передусім необхідно визначити напрям
відхилення qi
від номінального значення, тобто знак
для кожного yi
з урахуванням його ТТi.
Завдання зводиться до аналізу чутливості
вихідного параметра yi
до змінювання зовнішнього параметра
qi
і визначенню знаку коефіцієнта чутливості
sign(aij).
Зовнішні параметри qi
для найгіршого випадку розраховуються
за формулою
,
де знак «+» відповідає умові yi < ТТi, знак «-» – yi > ТТi.
У
загальному випадку для n
вихідних і l
зовнішніх параметрів визначається
матриця чутливості А
з елементами
.
Спеціальні вимоги до точності обчислення
елементів aij
не накладаються (важливо лише визначити
знаки aij),
тому для визначення матриці використовується
метод прирощень. Для розрахунку кожного
вихідного параметра в найгіршому випадку
yiНС
необхідно виконати один варіант аналізу.
Загальна кількість варіантів аналізу
становить (n+l+1).
Імовірнісні методи – використовуються для оцінювання впливу випадкового розкиду значень внутрішніх параметрів на розкид вихідних параметрів. Початковими даними для них служать умови працездатності за усіма вихідними параметрами Y і закони розподілення вірогідності внутрішніх параметрів X, що представлені у будь-якому вигляді: аналітичному, гістограм, таблиць результатів вимірювання параметрів.
Статистичні зв’язки внутрішніх параметрів між собою задаються у вигляді коефіцієнтів кореляцій, обчислених на підставі результатів вимірювання цих параметрів. Для отримання таких даних виконуються експериментальні виміри для великої кількості комплектуючих виробів і розробляються відповідні програми статистичної обробки отриманих результатів. Найбільшого поширення набули імовірнісні методи статистичного аналізу – аналітичний та чисельний, заснований на застосуванні методу Монте-Карло (метод статистичних випробувань).
Закони розподілення параметрів уi можна характеризувати функціями розподілення Fi(Yi), рівними вірогідності того, що уi виявиться менше деякої величини Yi. Вірогідність придатності за кожним параметром уi дорівнює Pi(yi>TTi)=1 – Fi(TTi) або Pi(yi<TTi)=Fi(TTi) залежно від умов працездатності.
Аналітичний метод статистичного аналізу характеризується тим, що за допомогою методу моментів знаходиться апроксимація функції Fi(Yi). Цей метод має порівняно невисоку точність і надмірну трудомісткість при великій кількості внутрішніх параметрів.
Метод Монте-Карло – один з найбільш ефективних чисельних методів статистичного аналізу, що добре враховує імовірнісну природу розсіювання випадкових значень вихідних характеристик. Математичне моделювання за цим методом повністю передає сутність та характер натурних експериментів. В практичній постановці зводиться до багатократного «розігрування» (згідно зі встановленими імовірнісними розподіленнями) випадкових значень хi і визначенню для кожного випадкового їх набору відповідних значень yi. Після завершення необхідного числа випробувань NТР статистична обробка послідовностей випадкових значень yi дає необхідну інформацію про розподілення значень вихідних показників і параметри цього розподілення.
В результаті по кожному вихідному показнику можна отримати його номінальне значення (при нульових допусках) yjНОМ, математичне очікування, яке за законом великих чисел може бути прийняте рівним середньому арифметичному набутих значень yi:
.
Крім того, визначають імовірнісні межі діапазону розсіювання yimin…yimax, графік щільності розподілення вірогідності WN значень yi, що побудований на цьому діапазоні (у вигляді гістограми), вірогідність попадання цих значень в задані межі та інше. Як вихідні параметри дослідження можуть бути обрані будь-які показники об’єкту, що дають інформацію про його функціонування.
Сучасні прикладні програми для персональних комп’ютерів дозволяють моделювати випадкові величини, розподілені за теоретичними законами. Точність методу Монте-Карло багато в чому залежить від заданої кількості випробувань N. Якщо, наприклад, задати похибку оцінки математичного очікування та СКВ в межах 0,01..0,001% з довірчою вірогідністю 0,9..0,95, то буде потрібно велике число випробувань (до 108). Проте в практичних задачах часто виявляються прийнятними погрішності оцінок математичного очікування і СКО в межах 10..24% з довірчою вірогідністю 0,9 .0,95, що забезпечується при N = 50…200.
Кореляційний аналіз – це розділ математичної статистики, який розглядає методи вивчення взаємозалежності між досліджуваними ознаками.
Перша основна задача визначення взаємозв’язку полягає у визначенні на основі спостереження над досліджуваними змінними того, як змінювалася би функція зв’язку при зміні одного з аргументів при решті аргументів незмінних в умовах, коли реально ця решта факторів також не лишається абсолютно постійною внаслідок коливань неконтрольованих і некерованих факторів й своєю зміною впливає на досліджувану залежність, що є характерним для стохастичних процесів.
Друга задача – це визначення міри спотворюючого впливу інших факторів на залежність, що нас цікавить. Задачі пошуку кореляції завжди розв’язуються при заданій кількості ознак, яка визначається наявними засобами дослідження і його метою.
Кореляційний аналіз дає змогу визначити форму та силу зв’язку між параметрами ТО при статистичній залежності між ними, коли кожному значенню одного параметра відповідає множина значень іншого.
Регресійний аналіз (або теорія регресії) дозволяє визначити теоретичну лінію регресії, тобто здійснити вибір типу регресійної кривої і розрахунок її параметрів, якщо між параметрами існує стохастична або кореляційна залежність. Сила зв’язку цих параметрів визначається коефіцієнтом кореляції, в той час як дослідження і оцінка математичного рівняння цієї залежності становить задачу регресійного аналізу. Інколи регресійний аналіз визначають просто як кількісну оцінку зв’язку між У та Х у вигляді лінії регресії. Цей процес називається вирівнюванням емпіричної лінії регресії.
Отримане під час регресійного аналізу рівняння являтиме собою експериментально-статистичну модель досліджуваного процесу, яка дозволить здійснити оптимізацію процесу в заданому діапазоні значень аргументу Х, прогнозувати значення У в цьому діапазоні та його найближчому довкіллі.
Вибір методу побудови моделі повинен враховувати особливості системи функціональних зв’язків, характер розподілення випадкових значень хi, а також вимоги до об’єму інформації про вихідні показники уi. Для завдань імовірнісного аналізу електромеханічних пристроїв залежність уj = fj(хi) представляється в загальному вигляді складними і нелінійними рівняннями, для яких не може бути гарантована явна вираженість і диференційованість. Вхідні параметри є, як правило, безперервними у межах поля допуску, випадковими величинами, а імовірнісні закони їх розподілення можуть бути в принципі різні. Для вихідних показників зазвичай вимагається повна статистична характеристика на основі методів, що використовуються в теорії вірогідності.
Важливо відмітити, що методи статистичного експерименту застосовні для дослідження як стохастичних, так і детермінованих систем.