
- •Оглавление
- •Предисловие
- •Введение
- •1.Основные понятия и законы геометической оптики
- •2. Волновой характер света.
- •2.1. Интерференция когерентных волн
- •2.1.1. Условия максимума и минимума интерференции когерентных волн
- •2.1.2. Интерференция при отражении света
- •2.1.3. Интерференция в тонком клине
- •2.1.4. Интерферометр Майкельсона
- •2.1.5. Интерференционные рефрактометры
- •2.2. Дифракция света
- •2.2.1. Принцип Гюйгенса-Френеля
- •2.2.2 Зоны Френеля
- •2.2.3 Дифракция Фраунгофера от щели.
- •2.2.4. Дифракционная решетка
- •2.2.5. Дифракция рентгеновских лучей
- •2.2.6. Голография
- •2.3. Поляризация света
- •2.3.1. Естественный и поляризованный свет
- •2.3.2. Способы получения поляризованного света
- •2.3.3 Закон Брюстера
- •2.3.4 Закон Малюса
- •2.3.5 Вращение плоскости поляризации
- •3. Взаимодействие электромагнитного излучения с веществом
- •3.1 Взаимодействие света с веществом
- •3.2. Классическая теория дисперсии
- •3.3 Тепловое излучение, его характеристика Абсолютно черное тело
- •3.4. Тепловое равновесие, закон Кирхгофа
- •3.5. Рассеяние света. Закон Рэлея
- •3.6 Поглощение света. Закон Бугера-Ламберта
- •4. Дуализм материи
- •4.1. Закономерности излучения абсолютно черного тела
- •4.2.Эффект Комптона
- •4.3 Фотоэлектрический эффект и природа электромагнитного излучения
- •4.4. Гипотеза де Бройля
- •4.5. Дифракция электронов. Опыт Дэвисона и Джермера
- •4.3. Соотношение неопределенностей
- •4.7. Волновая функция. Уравнение Шредингера
- •4.8. Электрон в «потенциальной яме» Квантование энергии
- •4.9.Теория атома водорода по Бору
- •4.9.1.Модель атома Резерфорда
- •4.9.2. Линейчатый спектр атома водорода
- •4.9.3. Строение атома. Постулаты Бора
- •4.9.4. Спектр атома водорода по Бору
- •4.9.5. Опыт Франка и Герца
- •5. Радиоактивные превращения
- •5.1. Состав атомного ядра, энергия связи ядра, законы радиоактивных превращений
- •5.2.Кинетика естественного радиоактивного распада
- •5.3. Ядерные реакции и их классификация
- •5.4.Управляемая реакция деления ядер
- •5.5. Использование ядерных превращений
- •5.5.1.Ядерная энергетика.
- •5.5.2. Атомная бомба
- •5.5.3. Реакция синтеза атомных ядер
- •Заключение
- •Библиографический список
- •О волновой и квантовой концепциях оптики
- •305040, Г. Курск, ул. 50 лет Октября, 94.
4.3 Фотоэлектрический эффект и природа электромагнитного излучения
В 1887 г. немецкий физик Г. Герц замечает, что ультрафиолетовое излучение в области искрового промежутка облегает разряд. В 1888 - 1890 гг. профессор Московского университета А.Г. Столетов устанавливает основные закономерности явления, названного фотоэлектрическим эффектом:
а/ под действием света вещество теряет только отрицательные заряды;
б/ явление вызывается преимущественно ультрафиолетовыми лучами;
в/ образующийся между катодом и анодом фототек пропорционален падающему на катод лучистому потоку;
г/ между моментом освещения катода и возникновением фототока не протекает заметного времени. Фотоэффект практически безинерционен.
Объяснение механизма фотоэффекта было впервые дано Эйнштейном в 1905 г. Эйнштейн предложил рассматривать излучение как поток материальных частиц, "квантов излучения" или "фотонов". Энергия фотона, как и в теории Планка, равна ε = hν. Монохроматическое излучение частоты ν состоит из целого числа фотонов. Если энергия фотона достаточна, чтобы электрон мог совершить работу выхода Авых, будет наблюдаться фотоэффект. Энергия выбитых фотоэлектронов различна. Наибольшей скоростью vm и кинетической энергией mv2m/2 будут обладать электроны, вырванные с самого верхнего энергетического уровня в металле. По закону сохранения энергии для этих электронов:
- уравнение
Эйнштейна
Это уравнение выведено на основе квантовой теории фотоэффекта, согласно которой свет с частотой ν не только испускается, но и распространяется в пространстве, и поглощается веществом отдельными порциями (квантами), энергия которых ε = hν. (Квантовая теория фотоэффекта позволяет понять необъяснимый, с точки зрения волновой теории, результат: значение mv2m/2, зависит только от частоты излучения и не зависит от его интенсивности.) Для каждого вещества существует «красная граница» фотоэффекта, т.е минимальная частота света, зависящая от химической природы вещества и состояния его поверхности, при которой свет любой интенсивности фотоэффекта не вызовет (энергия фотона ε = hν окажется меньше работы выхода Авых).
Явление выбивания излучением с поверхности металла электронов называют внешним фотоэффектом. В прозрачном диэлектрике или полупроводнике фотон поглощается электроном внутри кристалла. При этом электрон либо покидает атом, попадая в междоузлие кристаллической решетки (т.е. в зону проводимости), либо переходит на более высокие энергетические уровни, т.е. происходит возбуждение атомов. Это явление называется внутренним фотоэффектом. В случае полупроводников внутренний фотоэффект приводит к снижению электрического сопротивления (такого типа полупроводники называют фотосопротивлениями).
Вентильный фотоэффект – возникновение ЭДС при освещении контакта двух разных полупроводников или контакта полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает, таким образом, пути для прямого преобразования солнечной энергии в электрическую.
Волновые свойства излучения проверены на огромном экспериментальном материале (интерференция, дифракция, законы отражения и преломления). Корпускулярные свойства излучения также подтверждены многими опытами ("ультрафиолетовая катастрофа", фотоэффект, эффект Комптона). Обе картины - корпускулярная и волновая - равноправны и дополняют друг друга, в этом заключается двойственность корпускулярно - волновой природы излучения.