
- •1. Пневматические исполнительные устройства. Пневмоцилиндры, роторные и турбинные пневмодвигатели.
- •2.Основные элементы и схемы пневмоприводов.
- •3.Пневматические распределительные устройства.
- •4 Пневмоаппараты
- •5.Пневмоприводы транспортно - технологических машин.
- •6.Средства пневмоавтоматики. Струйные системы пневмоавтоматики.
- •7 Логико-вычислительные элементы (Процессоры)
- •8.. Общие сведения о гидродинамических передачах
- •9. Принцип действия обьемных и динамических машин. Основные параметры: подача(расход), напор, мощность, к.П.Д
- •10.Принцип действия гидропередач. Баланс мощности в гидромашинах.
- •11,12. Центробежный насос
- •13.Характеристика центробежного насоса.
- •14 Лопастные гидравлические машины и гидродинамические передачи
- •15.Основные сведения об осеВых насоСах.
- •16. Насосные установки и гидростанции
- •18. Назначение и область применения Гидродинамических передач. Принцип действия и классификация.
- •19.Принцип действия объемных гидропередач. Области применения гидроприводов.
- •20. Гидропневмоприводы металлообрабатывающих станков
- •21. Гидроприводы станочных приспособлений и технологической оснастки
- •22. Гидропневмоприводы и гидросистемы, обеспечивающие рабочий процесс при изготовлении и обработке деталей.
- •23. Применение гидропневмоприводов для средств комплексной механизации и автоматизации технологических процессов
- •25. Общие свойства и классификация роторных насосов
- •26. Характеристики роторных насосов.
- •27. Конструктивные схемы и типовые рабочие характеристики объемных насосов.
- •28.Поршневые насосы.
- •29.Радиально – поршневые насосы.
- •30.Аксиально-поршневые насосы.
- •31. Пластинчатые насосы.
- •32.Шестерные насосы.
- •33.Винтовые насосы.
- •34.Компрессоры.
- •35. Классификация объемных гидроприводов прохарактеру движения выходного звена и другим признакам.
- •36.Силовые гидроцилиндры, их назначение и устройство. Расчет гидроцилиндров.
- •37.Поворотные гидродвигатели.
- •38.Роторные гидродвигатели – гидромоторы. Обратимость роторных насосов и гидромоторовю
- •39.Высокомоментные гидромоторы.
- •40.Гидромоторы роторно-поршневых, пластинчатых, шестерных и винтовых типов.
- •41. Расчет крутящего момента и мощности на валу гидромотора. Регулирование рабочего объема.
- •41. Расчет крутящего момента и мощности на валу гидромотора. Регулирование рабочего объема.
- •42.Направляющая гидроаппаратура.
- •43 Гидрораспределители.
- •44. Пневмораспределители.
- •45.Гидроклапаны.
- •46.Гидравлические дроссели.
- •47. Гидробаки и гидроаккамуляторы насосных установок. Насосные установки гидроприводов.
- •48.Гидроприводы поступательного движения.
- •49.Гидроприводы вращательного движения.
- •50. Гидропривод поворотного движения.
- •51 Гидроприводы с последовательным и параллельным включением дросселя.
- •53 Гидропривод с регулируемым насосом и гидроприводом.
- •54. Гидропривод с регулируемым насосом и гидроприводом.
- •56.. Блок-схема цепи управления
13.Характеристика центробежного насоса.
Характеристика центробежного насоса, т.е. графическая зависимость напора, мощности и КПД от подачи при постоянных значениях частоты вращения, вязкости и плотности жидкой среды на входе в насос, представлена на рис. 2.3. Напорная характеристика H = H(Q) и мощностная характеристика N = N(Q) являются независимыми; кривая КПД η = η(Q) определяется первыми двумя.
Рис. 2.3. Характеристики центробежного насоса
Анализ устройства и принципа действия центробежного насоса показал, что эта машина будет иметь достаточную эффективность при условии быстроходного привода. Центробежные насосы применяются в водоснабжении, в энергетике, в системах топливоподачи, в различных технологических процессах. Они перекачивают различные жидкие среды: от жидкого водорода до расплавленного металла. Диапазон подач колеблется от 10 см3/c до 10 м3/c , давление – от 104Н/м2 (0,1 кг / см2 ) до 5 107 Н/м2 (500 кг / см2 ), частота вращения достигает 100000 об/мин и более.
14 Лопастные гидравлические машины и гидродинамические передачи
Различные виды лопастных гидромашин, их назначение. Основные параметры лопастных гидромашин, Классификация лопастных гидромашин по принципу действия, Основные конструктивные схемы гидротурбин, насосов и насос-турбин. Элементы проточной части лопастных гидромашин (центробежного насоса, реактивной гидротурбины, насос-турбины, гидромуфты и гидротрасформатора), их назначение. Понятие о рабочем и теоретическом напоре, гидравлическом КПД гидротурбины и насоса. Виды потерь энергии лопастных гидромашин, их общий КПД.
Основные условия подобия в лопастных гидромашинах. Связь между основными параметрами подобных гидромашин. Приведенные величины, коэффициент быстроходности, Классификация лопастных гидромашин по быстроходности и области их применения. Физическая сущность кавитации, ее последствия. Высота всасывания насоса и гидротурбины. Меры защиты от кавитации. Основные методы расчета рабочих органов лопастных гидромашин. Абсолютное и относительное движение жидкости в рабочем колесе. Треугольник скоростей. Уравнение Эйлера лопастной гидромашины (для насоса и гидротурбины). Рабочие и универсальные характеристики гидротурбины, насоса и насос-турбины. Способы регулирования лопастных гидромашин. Моментные характеристики лопастных гидромашин. Совместная работа насоса и сети.
Классификация гидродинамических передач. Основы рабочего процесса, баланс моментов, баланс напоров. Виды потерь; внешняя, универсальная и тяговая характеристики гидромуфт. Приведенные параметры и приведенная характеристика, ее связь с типом лопастной системы. Способы управления гидромуфтой, предельные гидромуфты со статическим и динамическим самоопорожнением. Влияние типа нагрузки на вид внешней характеристики и на потери; тепловой баланс. Расчет гидромуфты на основе моделирования с использованием приведенных характеристик. Особенности рабочего процесса гидротрансформатора, схемы проточной части. Внешняя и приведенная характеристики.
Типы гидротрансформаторов, конструктивные схемы (комплексных, многоколесных и многоступенчатых). Системы питания и охлаждения, тепловой баланс. Способы управления гидротрансформаторами. Согласование работы двигателя и гидротрансформатора. Методы расчета лопастных систем. Основы расчета характеристик гидротрансформатора.
1. КОЭФФИЦИЕНТ БЫСТРОХОДНОСТИ ТИХОХОДНЫХ
Большое значение приобретают перспективные научно-исследовательские работы по созданию научного задела для дальнейшего прогресса насосостроения. Здесь к основным направлениям научно-исследовательских работ относится создание высокопроизводительного, надежного насосного оборудования для транспортировки нефти.
На практике при выборе лопастного насоса широко используется размерный коэффициент быстроходности
(1)
где n – частота вращения рабочего колеса, об/мин; Q – оптимальная подача, Н – напор, развиваемый центробежным насосом.
Коэффициент быстроходности ns (или удельной коэффициент быстроходности) является универсальным параметром, критерием подобия. Это означает, что если два насоса имеют различные значения n, Q и H, но одно и то же значение ns, то они называются подобными.
Конструкция рабочего колеса в значительной степени зависит от ns. В зависимости от его значения рабочие колеса лопастного насоса условно разделяют на пять основных типов:
При увеличении ns, как правило, наружный диаметр рабочего колеса d2 уменьшается.
Величина ns характеризует данный тип насоса и облегчает выбор типа насоса для определения подачи Q, при заданном напоре Н. Наивысший КПД имеют центробежные насосы с ns = 90…300. Таким образом, выбор ns (удельной быстроходности) диктуется экономическими соображениями и стремлением получить высокий КПД и малые габариты насоса при допустимой высоте всасывания.
1.1.
Перевод коэффициента быстроходности ns в систему СИ
Если центробежный насос подаёт Qs м3/сек жидкости, то при Н =1м полезная мощность будет:
Зависимость (5) записана для воды в системе СИ.
1.2.