
- •Цели, задачи курса «Модели и методы принятия решений» и его место в системе экономических наук.
- •Экономика как система.
- •Управленческие решения: сущность, эффективность, последствия.
- •Роль менеджера в процессе подготовки управленческих решений.
- •Общие положения и понятия теории принятия управленческих решений.
- •Количественные методы принятия решений.
- •8. Технология разработки и реализации управленческих решений.
- •9. Планирование процесса принятия управленческих решений.
- •10. Мониторинг и контроллинг за реализацией управленческих решений.
- •11. Многокритериальные задачи.
- •12. Оценка альтернатив при выработке управленческих решений.
- •13. Оформление принятых решений.
- •15. Функции и функциональные зависимости.
- •16. Нахождение оптимумов функций.
- •17. Понятие, цели и задачи экономико-математического моделирования.
- •18. Классификация экономико-математических моделей.
- •19. Применение методов статистического анализа в экономике.
- •20. Понятие, цели и задачи имитационного моделирования.
- •21. Применение имитационного моделирования в экономике.
- •22. Основные понятия и положения теории искусственного интеллекта при принятии управленческих решений.
- •23. Базы знаний.
- •24. Оценка рисков при принятии управленческих решений.
- •25. Выбор критериев оптимальности и формирование системы ограничений.
- •26. Понятие, цели и задачи линейного моделирования.
- •27. Программные средства реализации линейных моделей.
- •28. Объективно обусловленные оценки.
- •29. Оптимизация производственного плана предприятия.
- •30. Учёт фактора времени в линейных моделях.
- •31. Модели принятия решений при управлении персоналом.
- •32. Межотраслевые модели.
- •33. Применение линейного моделирования в экономике.
- •34. Понятие регрессии и задачи регрессионного анализа.
- •35. Применение методов регрессионного анализа в экономике.
- •36. Понятие корреляции и задачи корреляционного анализа: теоретический и практический аспекты.
- •37. Этапы построения корреляционно-регрессионных моделей.
- •38. Применение методов статистического анализа в экономике и перспективы их развития.
- •39. Использование баз данных для построения моделей.
- •40. Тренды и их практическая значимость.
- •41. Основные понятия и определения системы массового обслуживания (смо).
- •42. Классификация смо.
- •43. Основные формулы для расчёта производственно-экономических характеристик смо.
- •44. Управление очередями – практический аспект.
- •45. Имитационное моделирование в смо.
- •46. Компьютерные технологии и программное обеспечение для прогнозирования характеристик создаваемых смо.
- •47 История возникновения и развития методов экспертных оценок.
- •48. Коллективные экспертные оценки.
- •49. Индивидуальные экспертные оценки.
- •50. Области применения методов экспертных оценок.
- •51 Принципы формирования групп экспертов.
- •52. Метод Дельфи.
- •53. Метод мозгового штурма: особенности и специфика использования.
- •54. Обработка результатов экспертных оценок.
- •55. Оценка эффективности метода экспертных оценок в экономике.
- •56. Рейтинги и их роль в деятельности страны и организаций.
- •57. Использование рейтингов при установлении деловых контактов.
- •58. Базы знаний.
- •59. Коллективные решения.
- •60. Роль консультантов и консалтинговых фирм при подготовке проектов решений, эффективность их деятельности.
21. Применение имитационного моделирования в экономике.
К имитационному моделированию прибегают, когда:
дорого или невозможно экспериментировать на реальном объекте;
невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные;
необходимо сымитировать поведение системы во времени.
Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между её элементами или другими словами — разработке симулятора (англ. simulation modeling) исследуемой предметной области для проведения различных экспериментов.
Имитационное моделирование позволяет имитировать поведение системы во времени. Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны или опасны. С наступлением эпохи персональных компьютеров производство сложных и уникальных изделий, как правило, сопровождается компьютерным трёхмерным имитационным моделированием. Эта точная и относительно быстрая технология позволяет накопить все необходимые знания, оборудование и полуфабрикаты для будущего изделия до начала производства. Компьютерное 3D-моделирование теперь не редкость даже для небольших компаний[
22. Основные понятия и положения теории искусственного интеллекта при принятии управленческих решений.
Под интеллектом будем понимать способность мозга решать задачи путем приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам для выполнения функии деятельности.
Интеллект –intelligence - (лат. Intellektus – познание, понимание, рассудок) –способность мышления, рационального познания, ум. Иначе – мыслительная способность, умственное начало у человека.
Рациональное познание – отражение объективной действительности в представлениях, суждениях, понятиях.
Мыслительная способность – способность, связанная с поиском решений, действий или закономерностей в нестандартных условиях, если методы, алгоритмы решения или действия априори не известны. В нашем курсе под интеллектом будем понимать способность мозга решать задачи путем приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам для выполнения функций деятельности.
ИИ (artificial intelligence - AI) – научное направление, которое занимается проблемами имитации человеческого интеллекта в рамках которого строятся теории и модели, призванные объяснить и использовать в технических системах принципы и механизмы интеллектуальной деятельности человека. ИИ – это одно из направлений информатики, целью которого является разработка программно-аппаратных средств, позволяющих пользователю-непрограммисту ставить и решать свои, традиционно считающиеся интеллектуальными задачи, общаясь с ЭВМ на ограниченном подмножестве естественного языка. Иначе и короче – ИИ это техническая (информационная и программно-аппаратная) реализация некоторых интеллектуальных способностей человека.
ИИ – область компьютерных наук, занимающаяся исследованием и автоматизацией разумного поведения.
Под ИС понимают адаптивную систему, позволяющую строить программы целесообразной деятельности по решению поставленных перед ними задач на основании конкретной ситуации, складывающейся на данный момент времени в окружающей среде.