
- •Лабораторная работа № 1 (4 ч.)
- •Теоретическая часть
- •Формулы и названия основных кислот.
- •Экспериментальная часть
- •Порядок выполнения работы
- •2. Получение и свойства гидроксидов
- •3. Получение солей.
- •Контрольные задания:
- •Групповые реакции катионов и анионов.
- •Экспериментальная часть
- •Образец записи в лабораторный журнал
- •Реакция на po ион
- •Реакция на Cl- ион
- •Реакция на ch3coo- ион
- •Реакция на no ион
- •Реакция на j- ион
- •Реакция на c2o ион
- •Качественные реакции на катионы
- •Реакция на ион nh
- •Контрольные вопросы
- •Теоретическая часть
- •Классификация воды по уровню жёсткости
- •Экспериментальная часть
- •Порядок выполнения работы:
- •1. Гидролиз карбонатов
- •2. Действие кислот на карбонаты и гидрокарбонаты.
- •3. Устранение временной (карбонатной ) жесткости.
- •4. Устранение постоянной жесткости.
- •Лабораторная работа №4 (4 ч.) учение о составе – первый уровень в познании свойств веществ
- •Опыт № 1 доктор, который всегда под рукой
- •Опыт № 2 как различить шерсть и хлопок?
- •Опыт № 3 странная жидкость
- •Опыт № 4 гипосульфит натрия – внештатный сотрудник химчистки
- •Опыт № 5 влияние кислотности среды или марганцовка в роли хамелеона
- •Лабораторная работа №5 (4 ч.) структурная химия - второй уровень познания свойств веществ
- •Опыт № 1 как обнаружить фруктозу в меде, ягодах и фруктах?
- •Опыт № 2 до синей окраски, если не нагревать
- •Опыт № 3 денатурация белковых молекул – польза или вред?
- •Часть 1 осаждение белков хлоридом натрия
- •Часть 2 осаждение белков солями тяжелых металлов
- •Лабораторная работа №6 (4 ч.) учение о химических процессах – третий уровень познания свойств веществ
- •Опыт № 1 влияние концентрации веществ на химическое равновесие
- •Часть 1
- •Часть 2
- •Опыт № 2 изучение скорости взаимодействия тиосульфата натрия и серной кислоты
- •Опыт № 3 влияние катализатора на скорость реакции разложения пероксида водорода
- •3. Список используемой литературы
- •5. Приложения
Контрольные задания:
Из перечисленных веществ выписать формулы солей , оснований, кислот: Ca(OH)2, Ca(NO3)2, FeCl3, HCl, H2O, ZnS, H2SO4, CuSO4, KOH Zn(OH)2, NH3, Na2CO3, K3PO4.
Укажите формулы оксидов, соответствующие перечисленным веществам H2SO4, H3AsO3, Bi(OH)3, H2MnO4, Sn(OH)2, KOH, H3PO4, H2SiO3, Ge(OH)4.
Какие гидроксиды относятся к амфотерным? Составьте уравнения реакций, характеризующих амфотерность гидроксида алюминия и гидроксида цинка.
Какие из указанных соединений будут попарно взаимодействовать: P2O5, NaOH, ZnO, AgNO3, Na2CO3, Cr(OH)3, H2SO4. Составьте уравнения возможных реакций.
Лабораторная работа № 2 (4 ч.)
Тема: Качественный анализ катионов и анионов
Цель: освоить технику проведения качественных и групповых реакций на катионы и анионы.
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Основной
задачей качественного анализа является
установление химического состава
веществ, находящихся в разнообразных
объектах (биологических материалах,
лекарственных препаратах, продуктах
питания, объектах окружающей среды). В
настоящей работе рассматривается
качественный анализ неорганических
веществ, являющихся электролитами, т.
е. по сути качественный анализ ионов.
Из всей совокупности встречающихся
ионов выбраны наиболее важные в
медико-биологическом отношении: (Fе3+,
Fе2+,
Zn2+,
Са2+,
Na+,
К+,
Мg2+,
Сl-,
РО
,
СО
и др.). Многие из этих ионов входят в
состав различных лекарственных препаратов
и продуктов питания.
В качественном анализе используются не все возможные реакции, а только те, которые сопровождаются отчетливым аналитическим эффектом. Наиболее часто встречающиеся аналитические эффекты: появление новой окраски, выделение газа, образование осадка.
Существуют два принципиально разных подхода к качественному анализу: дробный и систематический. В систематическом анализе обязательно используют групповые реагенты, позволяющие разделить присутствующие ионы на отдельные группы, а в некоторых случаях и на подгруппы. Для этого часть ионов переводят в состав нерастворимых соединений, а часть ионов оставляют в растворе. После отделения осадка от раствора анализ их проводят раздельно.
Например, в растворе имеются ионы А13+, Fе3+ и Ni2+. Если на этот раствор подействовать избытком щелочи, выпадает осадок Fе(ОН)3 и Ni(ОН)2, а в растворе остаются ионы [А1(ОН)4]-. Осадок, содержащий гидроксиды железа и никеля, при обработке аммиаком частично растворится за счет перехода в раствор [Ni(NН3)4]2+. Таким образом, с помощью двух реагентов — щелочи и аммиака были получены два раствора: в одном содержались ионы [А1(ОН)4]-, в другом - ионы [Ni(NН3)4]2+ и осадок Fе(ОН)3. С помощью характерных реакций затем доказывается наличие тех или иных ионов в растворах и в осадке, который предварительно нужно растворить.
Систематический анализ используют в основном для обнаружения ионов в сложных многокомпонентных смесях. Он очень трудоемок, однако преимущество его заключается в легкой формализации всех действий, укладывающихся в четкую схему (методику).
Для проведения дробного анализа используют только характерные реакции. Очевидно, что присутствие других ионов может значительно искажать результаты реакции (наложение окрасок друг на друга, выпадение нежелательных осадков и т. д.). Во избежание этого в дробном анализе используют в основном высокоспецифические реакции, дающие аналитический эффект с небольшим числом ионов. Для успешного проведения реакций очень важно поддерживать определенные условия, в частности, рН. Очень часто в дробном анализе приходится прибегать к маскировке, т. е. к переводу ионов в соединения, не способные давать аналитический эффект с выбранным реактивом. Например, для обнаружения иона никеля используется диметилглиоксим. Сходный аналитический эффект с этим реагентом дает и ион Fе2+. Для обнаружения Ni2+ ион Fе2+ переводят в прочный фторидный комплекс [FеF6]4- или же окисляют до Fе3+, например, пероксидом водорода.
Дробный анализ используют для обнаружения ионов в более простых смесях. Время анализа значительно сокращается, однако при этом от экспериментатора требуется более глубокое знание закономерностей протекания химических реакций, так как учесть в одной конкретной методике все возможные случаи взаимного влияния ионов на характер наблюдаемых аналитических эффектов достаточно сложно.
В аналитической практике часто применяют так называемый дробно-систематический метод. При таком подходе используется минимальное число групповых реактивов, что позволяет наметить тактику анализа в общих чертах, который затем осуществляется дробным методом.
По технике проведения аналитических реакций различают реакции: осадочные; микрокристаллоскопические; сопровождающиеся выделением газообразных продуктов; проводимые на бумаге; экстракционные; цветные в растворах; окрашивания пламени.
При проведении осадочных реакций обязательно отмечают цвет и характер осадка (кристаллический, аморфный), при необходимости проводят дополнительные испытания: проверяют осадок на растворимость в сильных и слабых кислотах, щелочах и аммиаке, избытке реактива. При проведении реакций, сопровождающихся выделением газа, отмечают его цвет и запах. В некоторых случаях проводят дополнительные испытания.
Например, если предполагают, что выделяющийся газ – оксид углерода (IV), его пропускают через избыток известковой воды.
В дробном и систематическом анализах широко используются реакции, в ходе которых появляется новая окраска, чаще всего это реакции комплексообразования или окислительно-восстановительные реакции.
В отдельных случаях такие реакции удобно проводить на бумаге (капельные реакции). Реактивы, не подвергающиеся разложению в обычных условиях, наносят на бумагу заранее. Так, для обнаружения сероводорода или сульфид-ионов применяют бумагу, пропитанную нитратом свинца [происходит почернение за счет образования сульфида свинца(II)]. Многие окислители обнаруживают с помощью йодкрахмальной бумаги, т.е. бумаги, пропитанной растворами иодида калия и крахмала. В большинстве же случаев необходимые реактивы наносят на бумагу во время проведения реакции, например, ализарин на ион А13+, купрон на ион Сu2+ и др. Для усиления окраски иногда применяют экстракцию в органический растворитель. Для предварительных испытаний используют реакции окрашивания пламени.