
- •Ткани, их строение и функции
- •Структура синапса
- •Классификации синапсов
- •Внешнее строение
- •Корешки спинного мозга
- •Серое вещество
- •Проводящие пути спинного мозга
- •Список нервов
- •Функции черепных нервов
- •Функции продолговатого мозга
- •Молекулярный слой
- •Ганглионарный слой
- •Зернистый слой
- •Сенсорные области
Вопросы к экзамену по анатомии ЦНС
Предмет, методы и значение анатомии ЦНС в подготовке психолога.
Курс «Анатомия центральной нервной системы» предназначен для создания у студентов необходимой основы последующего изучения психологии. В результате его освоения будущие психологи должны четко уяснить неразрывную взаимосвязь структуры и функции, а также знать основные морфологические субстраты, ответственные за проявление психологических явлений. Таким образом, основная задача курса «Анатомия центральной нервной системы» — это формирование целостного представления о строении материальной основы психики — центральной нервной системы.
Для понимания связи психологических процессов с теми или иными морфологическими структурами как в норме, так и при патологии.
Значение нервной системы в организме человека. Общий план строения и отделы ЦНС.
Основными функциями центральной нервной системы являются: 1) регуляция деятельности всех тканей и органов и объединение их в единое целое; 2) обеспечение приспособления организма к условиям внешней среды (организация адекватного поведения соответственно потребностям организма).
В нервной системе выделяют центральную и периферическую нервную систему. Периферическая нервная система представлена корешками спинного мозга, нервными сплетениями, нервными узлами (ганглиями), нервами, периферическими нервными окончаниями. В свою очередь, нервные окончания могут быть: а) эфферентными (двигательными), которые передают возбуждение от нервов к мышцам и железам; б) афферентными (чувствительными), передающими информацию от рецепторов к центральной нервной системе. ЦНС человека состоит из головного и спинного мозга. Спинной мозг представляет собой трубку с небольшим каналом посредине, окруженную нейронами и их отростками. Головной мозг является расширением спинного мозга. Макроскопически (невооруженным глазом) на срезе мозга можно выделить белое и серое вещество. Белое вещество представляет собой пучки нервных волокон и формирует проводящие пути. Так как большая часть длинных нервных отростков покрыта слоем белого жироподобного вещества (миелина), то их скопления имеют белый цвет. Серое вещество- это тела нейронов, формирующих нервные центры. Серое вещество в центральной нервной системе образует два типа скоплений (структур): ядерные структуры (ядра спинного мозга, ствола мозга и больших полушарий), в которых клетки лежат тесными группами, и экранные структуры (кора больших полушарий и мозжечка), в которых клетки лежат слоями. Головной мозг залегает в полости черепа. Топографической границей со спинным мозгом является плоскость, проходящая через нижний край большого затылочного отверстия. Средняя масса головного мозга составляет 1400 г с индивидуальными вариациями от 1100 до 2000 г. Между массой мозга и интеллектуальными способностями человека нет однозначной связи. Так, мозг И. С. Тургенева достигал массы почти 2 кг, а у французского писателя Анатоля Франса весил чуть больше одного килограмма. Тем не менее, их вклад в мировую литературу равновелик. Анатомически в головном мозге можно различить полушария, ствол и мозжечок (малый мозг). Ствол включает в себя продолговатый мозг, мост, средний мозг и промежуточный мозг.
Оси и плоскости тела, основные термины анатомии, применяемые для обозначения положения его частей.
При описании внешних форм тела используют оси и плоскости, принятые в системе прямоугольных Координат. Различают три оси тела: вертикальную, поперечную и сагиттальную. Все они пересекаются друг с другом под прямыми углами. Вертикальная ось самая длинная и перпендикулярна к плоскости опоры. Поперечная ось идет параллельно плоскости опоры. Сагиттальная ось, получившая название от латинского слова «сагитта» — стрела, направлена спереди назад. Поперечных и сагиттальных осей можно провести любое количество, вертикальную же ось — только одну. Поэтому вертикальная ось называется основной осью. Осям соответствуют три плоскости — сагиттальная, фронтальная и горизонтальная. Сагиттальная плоскость проходит в направлении сагиттальной оси и перпендикулярно поперечной оси. Через тело можно провести любое количество сагиттальных плоскостей. Одна из них, та, которая проходит через вертикальную основную ось, называется срединной, или медианной. Она делит тело на две симметричные половины — правую и левую. Фронтальная плоскость идет в направлении поперечной и перпендикулярна к сагиттальной оси. Любая из фронтальных плоскостей делит тело на заднюю и переднюю части. Фронтальная плоскость перпендикулярна опоре и параллельна передней поверхности тела, поверхности лба, с чем и связано ее название (латинское «фронс» — лоб). Горизонтальная, или поперечная, плоскость проходит в направлении поперечной оси параллельно плоскости опоры и перпендикулярна к вертикальной. Любая из поперечных плоскостей разделит тело на верхнюю и нижнюю половины. Соответственно осям и плоскостям определяется положение частей тела, расположение внутренних органов. Тело человека обладает симметрией. Это особенно четко выявляется при мысленном проведении через тело срединной сагиттальной плоскости. В расположении внутренних органов также наблюдается симметрия. Существуют правое и левое легкое, правая и левая почка. Однако в отношении ряда внутренних органов этот принцип нарушен. Известно, сердце человека располагается в грудной клетке больше слева, чем справа, желудок и селезенка — непарные органы и располагаются только слева. Положение частей тела по отношению к основным осям и плоскостям обозначается специальными терминами. Основные из них таковы: медиальный — расположенный ближе к срединной оси,внутренней; латеральный — расположенный дальше от срединной оси, боковой, наружный; краниальный — расположенный в направлении головы, черепа; каудальный — расположенный в обратном направлении, хвостовой; дорзальный — расположенный на задней, спинной стороне; вентральный — расположенный на передней-, брюшной стороне. Применительно к конечностям пользуются терминами: проксимальный — лежащий ближе к туловищу и дистальный—расположенный дальше от туловища. Например, голень по отношению к стопе расположена проксимально, а по отношению к бедру— дистально.
4. Основные виды тканей организма, их строение и функции.
Ткани, их строение и функции
Организм человека — сложная целостная саморегулирующаяся и самовозобновляющаяся система, состоящая из огромного количества клеток. На уровне клеток происходят все важнейшие процессы; обмен веществ, рост, развитие и размножение. Клетки и неклеточные структуры объединяются в ткани, органы, системы органов и целостный организм.
Ткани— это совокупность клеток и неклеточных структур (неклеточных веществ), сходных по происхождению, строению и выполняемым функциям. Выделяют четыре основные группы тканей: эпителиальные, мышечные, соединительные и нервную.
Эпителиальные ткани являются пограничными, так как покрывают организм снаружи и выстилают изнутри полые органы и стенки полостей тела. Особый вид эпителиальной ткани —железистый эпителий — образует большинство желез (щитовидную, потовые, печень и др.), клетки которых вырабатывают тот или иной секрет. Эпителиальные ткани имеют следующие особенности: их клетки тесно прилегают друг к другу, образуя пласт, межклеточного вещества очень мало; клетки обладают способностью к восстановлению (регенерации).
Эпителиальные клетки по форме могут быть плоскими, цилиндрическими, кубическими. По количеству пластов эпителии бывают однослойные и многослойные. Примеры эпителиев: однослойный плоский выстилает грудную и брюшную полости тела; многослойный плоский образует наружный слой кожи (эпидермис); однослойный цилиндрический выстилает большую часть кишечного тракта; многослойный цилиндрический — полость верхних дыхательных путей); однослойный кубический образует канальцы нефронов почек. Функции эпителиальных тканей; защитная, секреторная, всасывания.
Мышечные ткани обусловливают все виды двигательных процессов внутри организма, а также перемещение организма и его частей в пространстве. Это обеспечивается за счет особых свойств мышечных клеток — возбудимости и сократимости. Во всех клетках мышечных тканей содержатся тончайшие сократительные волоконца — миофибриллы, образованные линейными молекулами белков — актином и миозином. При скольжении их относительно друг друга происходит изменение длины мышечных клеток.
Соединительные ткани (ткани внутренней среды) объединяют группы тканей мезодермального происхождения, очень различных по строению и выполняемым функциям. Виды соединительной ткани: костная, хрящевая, подкожная жировая клетчатка, связки, сухожилия, кровь, лимфа и др. Общей характерной чертой строения этих тканей является рыхлое расположение клеток, отделенных друг от друга хорошо выраженным межклеточным веществом, которое образовано различными волокнами белковой природы (коллагеновыми, эластическими) и основным аморфным веществом.
У каждого вида соединительной ткани особое строение межклеточного вещества, а следовательно, и разные обусловленные им функции. Например, в межклеточном веществе костной ткани располагаются кристаллы солей (преимущественно соли кальция), которые и придают костной ткани особую прочность. Поэтому костная ткань выполняет защитную и опорную функции.
Кровь— разновидность соединительной ткани, у которой межклеточное вещество жидкое (плазма), благодаря чему одной из основных функций крови является транспортная (переносит газы, питательные вещества, гормоны, конечные продукты жизнедеятельности клеток и др.).
Межклеточное вещество рыхлой волокнистой соединительной ткани, находящейся в прослойках между органами, а также соединяющей кожу с мышцами, состоит из аморфного вещества и свободно расположенных в разных направлениях эластических волокон. Благодаря такому строению межклеточного вещества кожа подвижна. Эта ткань выполняет опорную, защитную и питательную функции.
Нервная ткань, из которой построены головной и спинной мозг, нервные узлы и сплетения, периферические нервы, выполняет функции восприятия, переработки, хранения и передачи ин-
формации, поступающей как из окружающей среды, так и от органов самого организма. Деятельность нервной системы обеспечивает реакции организма на различные раздражители, регуляцию и координацию работы всех его органов.
Основными свойствами нервных клеток —нейронов, образующих нервную ткань, являются возбудимость и проводимость. Возбудимость — это способность нервной ткани в ответ на раздражение приходить в состояние возбуждения, а проводимость — способность передавать возбуждение в форме нервного импульса другой клетке (нервной, мышечной, железистой). Благодаря этим свойствам нервной ткани осуществляется восприятие, проведение и формирование ответной реакции организма на действие внешних и внутренних раздражителей.
Нервная клетка, или нейрон, состоит из тела и отростков двух видов. Тело нейрона представлено ядром и окружающей его областью цитоплазмы. Это метаболический центр нервной клетки; при его разрушении она погибает. Тела нейронов располагаются преимущественно в головном и спинном мозге, т. е. в центральной нервной системе (ЦНС), где их скопления образуют серое вещество мозга. Скопления тел нервных клеток за пределами ЦНС формируют нервные узлы, или ганглии.
Стадии развития головного мозга в онтогенезе.
Головной мозг. Онтогенез — созревание головного мозга как многоуровневой, неравномерно созревающей структуры. Во внутриутробном периоде одновременно с закладкой и развитием основных жизненно важных органов первыми начинают формироваться отделы мозга, где расположены нервные центры, обеспечивающие их функционирование (продолговатый мозг, ядра среднего и промежуточного мозга). К концу внутриутробного периода у человека определенной степени зрелости достигают первичные проекционные поля коры больших полушарий. К моменту рождения уровень зрелости структур мозга позволяет осуществлять как жизненно важные функции (дыхание, сосание и др.), так и простейшие реакции на внешние воздействия. Созревание структур мозга в пренатальном периоде обеспечивает нормальное индивидуальное развитие, его нарушения приводят к ближайшим и отдаленным неблагоприятным последствиям, проявляющимся в нервно-психическом статусе и поведении ребенка. В постнатальном периоде продолжается интенсивное развитие мозга, в особенности его высших отделов — коры больших полушарий
Закономерности созревания структур мозга в онтогезене. Основная закономерность в характере созревания мозга как многоуровневой иерархически организованной системы заключается в том, что более эволюционно древние структуры созревают раньше (принцип развития структур мозга "снизу вверх" по определению Л.С. Выготского). Это прослеживается в ходе созревания структур мозга по вертикали — от спинного мозга и стволовых образований головного мозга, обеспечивающих жизненно важные функции, к коре больших полушарий. По горизонтали развитие идет от проекционных отделов, включающихся в обеспечение элементарных контактов с внешним миром уже с момента рождения, к ассоциативным, ответственным за сложные формы психической деятельности.
Для развития каждого последующего уровня необходимо полноценное созревание предыдущего. Так, для созревания проекционной коры необходимо формирование структур, через которые поступает сенсорно-специфическая информация. Для развития в онтогенезе ассоциативных корковых зон необходимо формирование и функционирование первичных проекционных отделов коры. Нарушение в раннем возрасте проекционных корковых зон приводит к недоразвитию областей более высокого уровня (вторичные проекционные и ассоциативные отделы). Позже созревающие структуры не просто надстраиваются над уже существующими, а оказывают влияние на их дальнейшее развитие. При исследовании активности отдельных нейронов было показано, что только после созревания проекционной корковой зоны нейроны релейного ядра таламуса приобретают зрелого типа специализированную реакцию на афферентный стимул.
Сформированная многоуровневая организация мозга носит иерархический характер. Ведущую роль в осуществлении психических процессов приобретают высшие отделы коры больших полушарий, управляющие подчиненными им структурами более низкого уровня. Такой принцип иерархической организации структур зрелого мозга Л.С. Выготский обозначил как направление "сверху вниз". Длительный и гетерохронный характер созревания структур мозга определяет специфику мозговой организации психических процессов в различные возрастные периоды.
Состав и строение нервной ткани.
Нервная ткань
Нервная ткань является основным компонентом нервной системы, обеспечивает проведение сигналов (импульсов) в головной мозг, их проведение и синтез, устанавливает взаимосвязь организма с внешней средой, участвует в координации функции внутри организма, обеспечивает его целостность. Нервная ткань образованна двумя отличающимися морфологически и функционально типами клеток. К одному из них относятся собственно нервные клетки или нейроны, а к другому клетки нейроглии или просто глии. И те, и другие происходят из общей популяции клеток - предшественниц, существующих только на ранней стадии эмбрионального развития мозга. В процессе дифференцировки два этих клеточных типа обособляются и затем специализируются на выполнении разных задач.
Нейроны
Среди большого количества нейронов человеческого мозга обнаружено множество непохожих друг на друга клеток, однако в их строении можно найти общие отличительные признаки (рис. 1). У каждого нейрона есть тело (другие названия этой части нейрона: сома, перикарион), где содержится ядро и цитоплазматические органеллы, где происходит синтез белков, нейромедиаторов и других важных компонентов жизнедеятельности клетки. При разрушении тела неизбежно гибнет и вся клетка.От тела клетки отходят два типа островков, представляющих собой тонкие нити цитоплазмы; они называются дендрит и аксон. Количество дендритов у различных клеток может существенно отличаться, у большинства нейронов их довольно много, причем каждый из дендритов ветвится подобно дереву, а его многочисленные ветви предназначены для приема сигналов, передаваемых соседними клетками. Получив такие сигналы, дендриты проводят их к телу клетки.
В отличие от непостоянного количества дендритов у любой нервной клетки может быть только один аксон, который проводит электрические сигналы лишь в одном направлении: от тела клетки. Эти электрические сигналы называются потенциалами действия и обычно возникают в аксонном холмике - месте отхождения аксона от сомы и распространяются по аксону со скоростью от 1 до 100 м/с.
Диаметр аксона почти одинаков на всем протяжении, у разных клеток его величина варьирует от 0,2 до 20 мкм. Это обстоятельство сказывается на скорости проведения сигнала: чем толще аксон, тем быстрее проводится по нему потенциал действия. Длина аксонов у разных клеток может сильно отличаться: от 0,1 мм до 1м. Многие аксоны заключены в особый футляр, сформированный отростками некоторых клеток глии. Образует этот футляр миелин - жироподобное вещество со свойствами электрического изолятора: в области миелиновых покрытий электрические сигналы не возникают.
Миелиновая оболочка аксона регулярно прерывается участками, свободными от миелина - они называются перехватами Ранвье. По этим перехватам и распространяются потенциалы действия, как бы перескакивая через миелинизированные участки от одного перехвата к другому (такой тип передачи называется сальтаторным, от лат. saltare - прыгать), поэтому скорость проведения оказывается довольно высокой. Некоторые аксоны не имеют миелинового покрытия: в отличие от миелинизированных волокон их называют безмиелиновыми (по другой терминологии миелинизированные и безмиелиновые волокна различают как мякотные и безмякотные). По безмиелиновым волокнам потенциалы действия распространяется медленнее: здесь они не «прыгают», а «ползут» по всей длине аксона.
Неподалеку от своих окончаний большинство аксонов разделяется на тонкие коллатеральные ветви или аксонные терминали, причем некоторые из них могут повернуть назад - это обратные коллатерали. Терминали аксона вступают в контакт с другими клетками, чаще всего с их дендритами, реже - с телом и еще реже - с аксоном. Аксоны эфферентных нейронов контактируют с клетками рабочих органов, которыми являются мышцы или железы внешней секреции. Контактная зона между двумя клетками получила название: синапс. В соответствии с этим термином клетка, передающая сигнал, называется пресинаптической, а получающая сигнал- постсинаптической. В подавляющем большинстве случаев эти клетки анатомически не соединяются и между ними находится синаптическая щель, которая заполнена жидкостью, напоминающей по своему составу плазму крови.
Из-за анатомической разобщенности пресинаптическая клетка может повлиять на постсинаптическую только с помощью химического посредника - нейромедиатора или нейротрансмиттера. Медиатор должен выделиться из окончания аксона пресинаптической клетки тогда, когда к этому окончанию подойдет потенциал действия.
Классификация нейронов
По количеству цитоплазматических отростков принято различать униполярные, биполярные и мультиполярные нейроны. Униполярные нейроны имеют единственный, обычно сильно разветвленный первичный отросток. Одна из его ветвей функционирует как аксон, а остальные - как дендриты. Такие клетки часто встречаются в нервной системе беспозвоночных, а у позвоночных они обнаруживаются лишь в некоторых ганглиях вегетативной нервной системы.
У биполярных клеток есть два отростка : дендрит проводит сигналы от периферии к телу клетки, а аксон передает информацию от тела клетки к другим нейронам. Так выглядят, например, некоторые сенсорные нейроны, встречающиеся в сетчатке глаза, в обонятельном эпителии. К этой же разновидности нейронов следует отнести и чувствительные клетки спинальных ганглиев, воспринимающих, например, прикосновение к коже или боль, хотя формально от их тела отходит лишь один отросток, который разделяется на центральную и периферическую ветви. Такие клетки называют псевдоуниполярными, они формировались первоначально как биполярные нейроны, но в процессе развития два их отростка соединились в один, у которого одна ветвь функционирует как аксон, а другая - как дендрит. У мультиполярных клеток один аксон, а дендритов может быть очень много, они отходят от тела клетки, а затем многократно делятся, образуя на своих ветвях многочисленные синапсы с другими нейронами. Так, например, на дендритах только одного мотонейрона спинного мозга образуется около 8000 синапсов, а на дендритах находящихся в коре мозжечка клеток Пуркинье может быть до 150000 синапсов.
Нейроны Пуркинье и самыми крупными клетками человеческого мозга: диаметр их тела около 80 мкм. А рядом с ними обнаруживаются крохотные зернистые клетки, их диаметр всего лишь 6-8 мкм. Мультиполярные нейроны встречаются в нервной системе чаще всего и среди них выявляется множество внешне не похожих друг на друга клеток. Нейроны принято классифицировать не только по форме, но и по выполняемой функции, по их месту в цепи взаимодействующих клеток. Некоторые из них имеют специальные чувствительные окончания - рецепторы, которые возбуждаются при действии на них каких-либо физических или химических факторов, таких как, например, свет, давление, присоединение определенных молекул. После возбуждения рецепторов чувствительные нейроны передают информацию в центральную нервную систему, т. е. проводят сигналы центростремительно или афферентно (лат. afferens - приносящий).
Другая разновидность клеток передает команды от центральной нервной системы к скелетным или гладким мышцам, к сердечной мышце или железам внешней секреции. Это либо двигательные, либо вегетативные нейроны, по которым сигналы распространяются центробежно, а сами такие нейроны называются эфферентными (лат. efferens - выносящий).
Все остальные нейроны относятся к категории вставочных или интернейронов, которые образуют основную массу нервной системы - 99,98% от общего количества клеток. Среди них встречаются локальные и проекционные нейроны. Другое название проекционных нейронов - релейные; у них, как правило, длинные аксоны, с помощью которых эти клетки могут передавать переработанную информацию отдаленным регионам мозга. У локальных интернейронов аксоны короткие, эти клетки перерабатывают информацию в ограниченных локальных цепях и взаимодействуют преимущественно с соседними нейронами.
Строение и виды нервных волокон.
Волокно нервное – это скопление клеток особого типа, на базе которых формируется отросток нейронов. С помощью химических реакций по этим структурам происходит передача нервного импульса. Вся периферическая нервная система полностью состоит из собранных в отдельные пучки нервных волокон.
Выделяют 2 вида нервных волокон.
Безмиелиновые нервные волокна - один слой швановских клеток, между ними - щелевидные пространства. Клеточная мембрана на всем протяжении контактирует с окружающей средой. При нанесении раздражения возбуждение возникает в месте действия раздражителя. Безмиелиновые нервные волокна обладают электрогенными свойствами (способностью генерировать нервные импульсы) на всем протяжении.
Миелиновые нервные волокна - покрыты слоями шванновских клеток, которые местами образуют перехваты Ранвье (участки без миелина) через каждые 1 мм. Продолжительность перехвата Ранвье 1 мкм. Миелиновая оболочка выполняет трофическую и изолирующую функции (высокое сопротивление). Участки, покрытые миелином не обладают электрогенными свойствами. Ими обладают перехваты Ранвье. Возбуждение возникает в ближайшем к месту действия раздражителя перехвата Ранвье. В перехватах Ранвье высокая плотность Nа-каналов, поэтому в каждом перехвате Ранвье происходит усиление нервных импульсов.
Основные свойства нервного волокна – это способности распознавать и передавать нервный импульс по направлению к центру его обработки и обратно. Обеспечение достоверности обработки информационного сигнала, полученного от центральной нервной системы, обеспечивает точность реакций и быстродействие жизненно важных функций организма.
Морфологическая и функциональная классификация нейронов.
Форма нейронов чрезвычайно разнообразна, среди них выделяют пирамидные, корзинчатые, звездчатые, овальные, круглые и пр. По количеству отростков,- отходящих от тела клетки, нейроны делятся на: мультиполярные, биполярные и монополярные. Наиболее разнообразны по форме нейроны коры головного мозга.
Мультиполярные нейроны — клетки, наиболее характерные для мозга позвоночных, имеют много дендритных отростков и один аксон.
Биполярные нейроны — чаще относят к периферическим чувствительным системам. Эти нейроны имеют два отростка: дендрит и аксон.
Униполярные нейроны — чаще встречаются в ганглиях беспозвоночных. У этих нейронов только один клеточный отросток. Выйдя из клетки, на некотором расстоянии от нее он делится на аксон и дендриты.
Размеры нервных клеток колеблются от 5 мкм (клетки-зерна мозжечка) до 900 мкм (клетки ганглиев брюхоногих моллюсков). Чем крупнее нейрон, тем больше его дендритное поле, тем длиннее аксон. Следовательно, крупный нейрон получает больше информации и на большее расстояние ее передает.
Функционально нейроны делятся на три типа: афферентные, промежуточные и эфферентные. К афферентным нейронам относят рецепторные нейроны органов чувств, псевдоуниполярные нейроны спинальных и черепно-мозговых ганглиев. Один отросток этих нейронов образует окончания на структурах периферического органа, а другой идет в ЦНС и ветвится на окончания, контактирующие на других клетках.
Промежуточные нейроны располагаются внутри центральной нервной системы, их отростки не покидают ее пределов, эти нейроны как бы вставлены между афферентными и эфферентными нейронами данной структуры.
Эфферентные нейроны характеризуются тем, что их аксоны отличаются большой длиной, выходят за пределы своей структуры или за пределы ЦНС, образуют периферические нервы и заканчиваются в органах или нервных узлах.
Существует другая классификация нейронов, учитывающая химическую характеристику выделяемых в окончании аксонов веществ: холинэргические, пептидэргические, норадренэргиче-ские, дофаминэргические, серотонинэргические и т. д. нейроны.
Нейроны центральной нервной системы различаются по их способности реагировать на разные раздражения.
Нейроны реагирующие только на один вид раздражения, называют моносенсорными, на два — бисенсорными, на три и более — полисенсорными.
Моносенсорные нейроны подразделяются по их чувствительности к определенному качеству раздражения. Так, отдельные нейроны слуховой коры могут реагировать на предъявление тона 1000 Гц и не реагировать на тоны другой частоты. Такие нейроны называются мономодальными.
Нейроны, реагирующие на два тона, называются бимодальными, на три и более — полимодальными.
Нервные клетки центральной нервной системы делятся на фоновоактивные и молчащие. Фоновоактивные разряжаются импульсами без раздражения. Молчащие — это нейроны, разряжающиеся импульсами только в ответ на какое-либо раздражение.
Частота разрядов фоновоактивных нейронов варьирует от нескольких импульсов/с (некоторые нейроны позвоночных) до нескольких сотен/с (нейроны электрических рыб). Фоновоактивные нейроны могут давать разряды с постоянной частотой, это нейроны большинства беспозвоночных. У высших животных чаще встречаются нейроны с аритмической активностью.
Среди этих нейронов встречаются следующие типы фоновой активности: пачечный, групповой, непрерывно аритмичный. Пачечный тип активности характеризуется появлением группы импульсов с коротким межимпульсным интервалом, после чего наступает период молчания, и вновь возникает пачка импульсов, Межимпульсные интервалы в таких пачках приблизительно равны 1— 3 мс. Групповой тип активности характеризуется апериодическим появлением в фоне группы импульсов, межимпульсные интервалы в этих группах могут быть разные - от 3 до 30 мс. Непрерывно аритмичный тип активности характеризуется наличием в фоне возникающих через близкие, но разные промежутки времени импульсных разрядов. Нейроны могут реагировать только на включение раздражения — «оп»-нейроны или выключение раздражения — «оff»-нейроны и, наконец, встречаются нейроны, которые могут реагировать и на включение и на выключение раздражения -«оn-off»-нейроны. Фоновоактивные нейроны имеют большое значение в поддержании тонуса коры и других структур мозга. Кроме того, они имеют большое значение в повышении чувствительности нейронов к раздражению, так как даже самые слабые воздействия изменяют частоту следования импульсов. Таким способом нейрон сигнализирует о приходе к нему возбуждающих или тормозящих сигналов. Фоновоактивные нейроны делятся на тормозящиеся — урежающие частоту разрядов в ответ на сигнал и возбуждающиеся - учащающие частоту разрядов в ответ на какое-либо раздражение.
Межклеточные взаимодействия в нервной системе. Строение и классификация синапсов.
Межклеточные контакты — соединения между клетками, образованные при помощи белков. Межклеточные контакты обеспечивают непосредственную связь между клетками. Кроме того, клетки взаимодействуют друг с другом на расстоянии с помощью сигналов (главным образом - сигнальных веществ), передаваемых через межклеточное вещество.
Межклеточные соединения возникают в местах соприкосновения клеток в тканях и служат для межклеточного транспорта веществ и передачи сигналов (межклеточное взаимодействие), а также для механического скрепления клеток друг с другом.
Синапсы являются особыми формами межклеточных соединений. Они характерны для нервной ткани и встречаются между нейронами (межнейронные синапсы) или между нейроном и клеткой-мишенью (нервно-мышечные синапсы и пр.).
Синапсы – участки контакта двух клеток, специализированных для односторонней передачи возбуждения или торможения от одной клетки к другой. Их функция – именно передача нервного импульса с нейрона на другую нервную клетку или клетку-мишень.