
- •I технология защиты биосферы
- •1 Источники, классификация и методы переработки твердых отходов
- •1.1 Источники и классификация твёрдых отходов
- •1.2 Механическая, механотермическая и термическая переработка твердых отходов (то)
- •2 Переработка отходов неорганических производств
- •2.1 Переработка отходов сернокислотного производства
- •2.2 Переработка отходов производства фосфорных удобрений
- •2.3 Переработка отходов производства калийных удобрений
- •2.4 Переработка отходов производства кальцинированной соды
- •2.5 Переработка отходов горнодобывающей промышленности
- •2.6 Переработка отходов углеобогащения
- •2.7 Переработка и использование сопутствующих пород
- •3 Отходы черной металлургии
- •3.1 Технологические процессы производства шлакового щебня
- •3.2 Шлаки цветной металлургии
- •4 Отходы тепловых электростанций
- •5 Технологии переработки твердых бытовых отходов
- •5.1 Технология сбора, удаления и складирования тбо
- •5.1.1 Масштабы образования и нормы накопления тбо
- •5.1.2 Состав и свойства тбо
- •5.1.3 Технология сбора тбо на местах их образования
- •5.1.4 Технология эвакуации тбо
- •5.1.5 Технология складирования тбо на полигонах
- •5.2 Технология рекультивации территорий закрытых полигонов
- •5.3 Термические методы переработки тбо
- •5.3.1 Классификация методов
- •5.3.2 Термические методы переработки тбо при температурах ниже температуры плавления шлака
- •5.3.2.1 Слоевое сжигание неподготовленных тбо в топках мусоросжигательных котлоагрегатов
- •5.3.2.2 Слоевое сжигание тбо в топке с наклонно переталкивающей решёткой
- •5.3.3 Сжигание в барабанных вращающихся печах
- •5.3.4 Сжигание в печах кипящего слоя
- •5.3.5 Сжигание-газификация в плотном слое кускового материала без его принудительных перемешивания и перемещения
- •5.3.6 Термические методы переработки тбо при температурах выше температуры плавления шлака
- •5.3.6.1 Сжигание в слое шлакового расплава
- •5.3.6.2 Сжигание с использованием электрошлакового расплава
- •5.3.6.3 Пиролиз тбо
- •5.4 Выработка и использование тепловой и других видов энергии на мусоросжигательных заводах
- •5.4.1 Основные предпосылки и факторы сравнения технологических схем утилизации мсз
- •5.4.2 Использование тепла мсз в системах теплоснабжения
- •5.4.2.1 Выбор варианта включения мсз в схему теплоснабжения
- •5.4.3 Использование тепла мсз для выработки электрической энергии
- •5.4.4 Использование тепла мсз для холодильных установок и систем кондиционирования воздуха
- •5.4.5 Использование тепла мсз для сушки осадков сточных вод
- •5.4.5.1 Испарительная сушка осв с использованием в качестве теплоносителя дымовых газов мсз
- •5.4.5.2 Испарительная установка сушки осв с использованием в качестве теплоносителя получаемого на мсз пара
- •5.5 Охрана окружающей среды при эксплуатации мсз
- •5.5.1 Очистка дымовых газов мсз
- •5.5.1.1 Характеристика дымовых газов мсз
- •5.5.1.2 Приемы очистки дымовых газов мсз
- •5.5.2 Утилизация золошлаковых отходов мсз
- •5.6 Аэробное компостирование тбо
- •5.7 Комплексная переработка тбо
- •II технология рекуперации промышленных отходов
- •1 Определения и классификация
- •2 Классификация твердых промышленных и бытовых отходов (тп и бо)
- •3 Технология переработки отходов. Содержащих или образующих органические вещества (диоксины и родственные им соединения)
- •3.1 Полиароматические углеводороды
- •3.2 ”Грязная дюжина”
- •3.3 Процессы, источники образования диоксинов, их токсичность
- •3.4 Полувыведение и полупревращение диоксинов
- •3.5 Показатели токсичности диоксинов
- •4 Технология переработки отходов. Содержащих или образующих неорганические вещества
- •4.1 Неорганические токсины
- •5 Переработка и утилизация отходов пластмасс
- •1 Предварительная очистка и сортировка 2 Измельчение 3 Отмывка и сепарация 4а Классификация по видам 4б Сушка
- •6 Использование при выпуске изделий 5 Конфекционирование и гранулирование
- •5.1 Сепарация пластмассовых отходов из бытового мусора
- •6 Переработка термопластичного вторичного сырья
- •6.1 Измельчение
- •6.2 Уплотнение
- •6.3 Агломерация
- •6.4 Промывка и сушка
- •6.5 Дегазация и фильтрование
- •6.6 Гомогенизация и пластикация
- •6.7 Технология подготовки и использования вторичного сырья из смесей термопластов с другими материалами
- •7 Переработка вторичного сырья эластомеров. Шины и рти
- •7.1 Использование целых шин
- •7.2 Сжигание шин с целью получения энергии
- •7.3 Пиролиз шин
- •7.4 Дробление (измельчение) изношенных шин
3 Технология переработки отходов. Содержащих или образующих органические вещества (диоксины и родственные им соединения)
Органические вещества, являющиеся токсичными для микроорганизмов, животных, человека, вырабатываются бактериями, микроводорослями, растениями, насекомыми, рыбами, пресмыкающимися. Различные виды используют эти токсины и для борьбы за экологическую нишу (сине-зеленые водоросли) и как средство защиты или нападения. Среди этих природных токсинов и столь простые вещества, как синильная кислота, роданистый аллил, пентаметилендиамин и вещества группы алкалоидов, а также наиболее токсичные вещества белковой природы - ботулинический и дифтерийный токсины. Однако число природных токсинов составляет ничтожную долю токсичных веществ, созданных в лабораториях органического синтеза и нашедших применение не только в криминальных целях, но и в медицине, технике мирной и военной (как боевые отравляющие вещества). Летальная доза современных отравляющих фосфорорганических веществ (VX-газы) составляет 10-4 мг на 1 кг живого веса, что в сотни раз превышает токсичность классических их предшественников: иприта, люизита. Количество VX, накопленного в арсеналах США и России и подлежащего уничтожению, достигает 50 тыс. т. Этого достаточно для летального отравления ~1015 человек. От безумия химической войны человечество отказалось, а безумие экотоксикации - выбросов в окружающую среду органических веществ, губительно действующих на здоровье миллиардов людей, продолжается.
Наиболее опасными среди множества токсичных веществ, образующихся при производстве энергии сжиганием ископаемых топлив, производствах химической, нефтехимической, металлургической, целлюлозно-бумажной промышленности, являются вещества групп ПАУ (полиароматические углеводороды), и, в особенности, диоксины. Оба этих названия собирательные. Группа ПАУ объединяет десятки веществ, для которых характерно наличие в химической структуре трех и более конденсированных бензольных колец. Группа диоксинов объединяет сотни веществ, каждое из которых содержит специфическую гетероциклическую структуру с атомами хлора или брома в качестве заместителей.
3.1 Полиароматические углеводороды
Простейшие вещества из группы ПАУ:
|
|
|
нафталин |
антрацен |
фенантрен |
Эти вещества не обладают присущей другим ПАУ канцерогенной (мутагенной) токсичностью. Такими являются:
|
|
холатрен |
перилен |
|
|
бенз(а)пирен |
дибенз(а)пирен |
На фоне их токсичности как нетоксичные квалифицируются и весьма похожие по структуре бензперилен, пирен, флуорантен. Образуются ПАУ в процессах сгорания нефтепродуктов, угля, дерева, мусора, пищи, табака, и, чем ниже температура в устройстве для сжигания, тем больше образуется ПАУ. Относительно малые количества бенз(а)пирена обнаружены в асфальте.
Вместе с другими продуктами сгорания ПАУ поступают в воздух. При комнатной температуре все ПАУ - твердые кристаллические вещества. Температуры их плавления близки к 200 оС, а давление насыщенных паров очень мало. При охлаждении горячих газов, содержащих ПАУ, вещества эти должны конденсироваться и оседать в зоне их выбросов. На расстоянии нескольких километров от угольной ТЭС поверхность почвы загрязнена ПАУ. Но большая часть ПАУ уносится на дальние расстояния в виде аэрозолей. Прекрасным адсорбентом для ПАУ являются сажевые частицы. На 1 см2 сажевой поверхности могут разместиться ~1014 молекул ПАУ. Это и приводит к тому, что загрязненный сажевым аэрозолем воздух городов содержит порой количества ПАУ большие, чем соответствующие давлению насыщенного пара этих веществ. Об относительном вкладе разных источников можно судить по данным о выбросах бенз(а)пирена (в т/год) в США:
сгорание угля – 600;
производство кокса – 200;
лесные пожары – 150;
сжигание дров – 70.
Вклад всех курильщиков США в общее производство бенз(а)пирена невелик - 0,05 т/год. Но мнение о малозначимости этого количества сменится на противоположное на основе данных о локальных концентрациях бенз(а)пирена (кг/м3):
свежий воздух – 1;
городской воздух – 20;
комната с табачным дымом – 100.
Некоторым утешением для некурящих, находящихся в этой комнате, служит то, что выпускаемый курильщиком табачный дым менее вреден, чем ими вдыхаемый. Аэрозольные частицы табачного дыма с адсорбированными на них молекулами бенз(а)пирена имеют различные размеры. Для организма особенно опасны частицы с размером 0,5-5 мкм. Частицы большего размера задерживаются на слизистых поверхностях курильщика, а частицы меньшего размера не задерживаются в легких. Таким образом, выдыхаемый курильщиком воздух частично отфильтрован от наиболее вредных дымовых частиц. Очевидна целесообразность ширящихся во всех странах запретов на курение в служебных помещениях. Корреляция риска заболевания раком легких с годами курения не требует пояснений. Содержатся ПАУ и в питьевой воде. По нормам Всемирной организации здравоохранения, допустимый предел содержания всех ароматических веществ в питьевой воде кажется большим - 200 нг/л. Но основное приходится на нетоксичный (по сравнению с бенз(а)пиреном и другими ПАУ) бензол. Содержание же бенз(а)пирена в питьевой воде составляет 0,3-2,0 нг/л.
Токсические свойства бенз(а)пирена изучены на мышах: обнаружено подавление популяции за счет гибели при рождении и уменьшения веса новорожденных животных. Показано, что возникновение раковых заболеваний происходит и при ингаляции, и при введении бенз(а)пирена с пищей, а также при контакте с кожей. Однако эти результаты получены при дозах бенз(а)пирена, в сотни и тысячи раз больших, чем получаемые людьми из окружающей среды. В атмосфере ПАУ довольно устойчивы. Их постепенная трансформация в иные продукты происходит при взаимодействии с озоном (с образованием полиядерных хинонов) и диоксидом азота (продукты - нитробенз(а)пирены, характерные высокой мутагенной активностью). Из организма бенз(а)пирен частично выводится в неизмененном виде, а частично окисляется, давая производные фенольного и хинонного типа. Некоторым из этих продуктов также присуща мутагенная активность. ПАУ - типичные экотоксины. Сложность защиты окружающей среды от ПАУ связана с малостью концентраций этих веществ. Однако эта опасная малость несравнима с малостью концентрации суперэкотоксинов - веществ группы диоксинов.