
- •I технология защиты биосферы
- •1 Источники, классификация и методы переработки твердых отходов
- •1.1 Источники и классификация твёрдых отходов
- •1.2 Механическая, механотермическая и термическая переработка твердых отходов (то)
- •2 Переработка отходов неорганических производств
- •2.1 Переработка отходов сернокислотного производства
- •2.2 Переработка отходов производства фосфорных удобрений
- •2.3 Переработка отходов производства калийных удобрений
- •2.4 Переработка отходов производства кальцинированной соды
- •2.5 Переработка отходов горнодобывающей промышленности
- •2.6 Переработка отходов углеобогащения
- •2.7 Переработка и использование сопутствующих пород
- •3 Отходы черной металлургии
- •3.1 Технологические процессы производства шлакового щебня
- •3.2 Шлаки цветной металлургии
- •4 Отходы тепловых электростанций
- •5 Технологии переработки твердых бытовых отходов
- •5.1 Технология сбора, удаления и складирования тбо
- •5.1.1 Масштабы образования и нормы накопления тбо
- •5.1.2 Состав и свойства тбо
- •5.1.3 Технология сбора тбо на местах их образования
- •5.1.4 Технология эвакуации тбо
- •5.1.5 Технология складирования тбо на полигонах
- •5.2 Технология рекультивации территорий закрытых полигонов
- •5.3 Термические методы переработки тбо
- •5.3.1 Классификация методов
- •5.3.2 Термические методы переработки тбо при температурах ниже температуры плавления шлака
- •5.3.2.1 Слоевое сжигание неподготовленных тбо в топках мусоросжигательных котлоагрегатов
- •5.3.2.2 Слоевое сжигание тбо в топке с наклонно переталкивающей решёткой
- •5.3.3 Сжигание в барабанных вращающихся печах
- •5.3.4 Сжигание в печах кипящего слоя
- •5.3.5 Сжигание-газификация в плотном слое кускового материала без его принудительных перемешивания и перемещения
- •5.3.6 Термические методы переработки тбо при температурах выше температуры плавления шлака
- •5.3.6.1 Сжигание в слое шлакового расплава
- •5.3.6.2 Сжигание с использованием электрошлакового расплава
- •5.3.6.3 Пиролиз тбо
- •5.4 Выработка и использование тепловой и других видов энергии на мусоросжигательных заводах
- •5.4.1 Основные предпосылки и факторы сравнения технологических схем утилизации мсз
- •5.4.2 Использование тепла мсз в системах теплоснабжения
- •5.4.2.1 Выбор варианта включения мсз в схему теплоснабжения
- •5.4.3 Использование тепла мсз для выработки электрической энергии
- •5.4.4 Использование тепла мсз для холодильных установок и систем кондиционирования воздуха
- •5.4.5 Использование тепла мсз для сушки осадков сточных вод
- •5.4.5.1 Испарительная сушка осв с использованием в качестве теплоносителя дымовых газов мсз
- •5.4.5.2 Испарительная установка сушки осв с использованием в качестве теплоносителя получаемого на мсз пара
- •5.5 Охрана окружающей среды при эксплуатации мсз
- •5.5.1 Очистка дымовых газов мсз
- •5.5.1.1 Характеристика дымовых газов мсз
- •5.5.1.2 Приемы очистки дымовых газов мсз
- •5.5.2 Утилизация золошлаковых отходов мсз
- •5.6 Аэробное компостирование тбо
- •5.7 Комплексная переработка тбо
- •II технология рекуперации промышленных отходов
- •1 Определения и классификация
- •2 Классификация твердых промышленных и бытовых отходов (тп и бо)
- •3 Технология переработки отходов. Содержащих или образующих органические вещества (диоксины и родственные им соединения)
- •3.1 Полиароматические углеводороды
- •3.2 ”Грязная дюжина”
- •3.3 Процессы, источники образования диоксинов, их токсичность
- •3.4 Полувыведение и полупревращение диоксинов
- •3.5 Показатели токсичности диоксинов
- •4 Технология переработки отходов. Содержащих или образующих неорганические вещества
- •4.1 Неорганические токсины
- •5 Переработка и утилизация отходов пластмасс
- •1 Предварительная очистка и сортировка 2 Измельчение 3 Отмывка и сепарация 4а Классификация по видам 4б Сушка
- •6 Использование при выпуске изделий 5 Конфекционирование и гранулирование
- •5.1 Сепарация пластмассовых отходов из бытового мусора
- •6 Переработка термопластичного вторичного сырья
- •6.1 Измельчение
- •6.2 Уплотнение
- •6.3 Агломерация
- •6.4 Промывка и сушка
- •6.5 Дегазация и фильтрование
- •6.6 Гомогенизация и пластикация
- •6.7 Технология подготовки и использования вторичного сырья из смесей термопластов с другими материалами
- •7 Переработка вторичного сырья эластомеров. Шины и рти
- •7.1 Использование целых шин
- •7.2 Сжигание шин с целью получения энергии
- •7.3 Пиролиз шин
- •7.4 Дробление (измельчение) изношенных шин
5.3.6.3 Пиролиз тбо
Под понятием пиролиз объединены все системы, обеспечивающие комплексную энерготехнологическую переработку отходов. В теплоэнергетике термохимические методы использования топлива разделяют, в зависимости от условий процесса, на пиролиз, газификацию и двухступенчатое сжигание.
В наиболее общем случае при пиролизе отходов протекают связанные между собой процессы сушки, сухой перегонки (пиролиза), газификации и горения коксового остатка, а также взаимодействия образующихся газообразных продуктов.
Сухой перегонкой (пиролизом) отходов принято называть процессы термического разложения топлива без доступа окислителя. Для процессов разложения отходов характерно стехиометрическое уравнение, подобное уравнениям химических реакций:
отходы → газ + смолы + водный раствор + углеродистый твердый остаток (кокс)
Соотношение количеств получаемых продуктов (газообразных, жидких и твердых) и их состав зависят от условий пиролиза и состава сырья. Особое влияние на процесс оказывают скорость нагревания и температура, с повышением которых значительно увеличивается выход газа (растет содержание водорода) и жидких продуктов. Выделение газообразных веществ заканчивается при температуре 1000-1100 °С.
В результате газификации углерод твердого остатка под воздействием окислителя (воздуха, кислорода или водяных паров) превращается в газообразное топливо. Оставшийся после этого твердый остаток содержит лишь минеральную часть отходов в виде золы или шлака. В основе газификации лежит либо неполное горение кокса (при недостатке кислорода), либо полное горение с последующим реагированием углерода с углекислотой и водяным паром.
Образование так называемого воздушного газа (при воздушном или кислородном дутье) сопровождается следующими реакциями:
2С + О2 = 2СО (51)
С + О2 = СО2 (52)
СО2 + С = 2СО (53)
При паровом дутье происходят следующие реакции образования водяного газа:
С + Н2О = СО + Н2 (54)
С + 2Н2О = СО2 + 2Н2 (55)
СО2 + Н2 = СО + Н2О (56)
При реагировании с коксом смеси воздуха (или кислорода) и водяного пара образуется смешанный или паровоздушный газ. В этих условиях протекают все вышеуказанные химические реакции. Перечисленные реакции являются суммарными – балансовое уравнение:
6C+2O2+2H2O=6CO+2H2 (57)
В действительности механизм реагирования при пиролизе отходов значительно более сложен.
В настоящее время известно более 50 систем пиролиза отходов, отличающихся друг от друга видом исходного сырья (отходов), температурой процесса, конструктивными решениями и технологической схемой переработки сырья.
В основу классификации пиролизных установок положен температурный уровень процесса, поскольку именно температурой в реакторе определяется выход и качество продуктов пиролиза отходов того или иного состава. В соответствии с этим различают три разновидности пиролиза:
1) низкотемпературный (450-550° С), характеризующийся минимальным выходом газа, максимальным количеством смол, масел и твердых остатков;
2) среднетемпературный (до 800° С), при котором увеличивается выход газа, уменьшается количество смол и масел;
3) высокотемпературный (свыше 800° С), отличающийся максимальным выходом газов и минимальным количеством смолообразных продуктов.