
- •I технология защиты биосферы
- •1 Источники, классификация и методы переработки твердых отходов
- •1.1 Источники и классификация твёрдых отходов
- •1.2 Механическая, механотермическая и термическая переработка твердых отходов (то)
- •2 Переработка отходов неорганических производств
- •2.1 Переработка отходов сернокислотного производства
- •2.2 Переработка отходов производства фосфорных удобрений
- •2.3 Переработка отходов производства калийных удобрений
- •2.4 Переработка отходов производства кальцинированной соды
- •2.5 Переработка отходов горнодобывающей промышленности
- •2.6 Переработка отходов углеобогащения
- •2.7 Переработка и использование сопутствующих пород
- •3 Отходы черной металлургии
- •3.1 Технологические процессы производства шлакового щебня
- •3.2 Шлаки цветной металлургии
- •4 Отходы тепловых электростанций
- •5 Технологии переработки твердых бытовых отходов
- •5.1 Технология сбора, удаления и складирования тбо
- •5.1.1 Масштабы образования и нормы накопления тбо
- •5.1.2 Состав и свойства тбо
- •5.1.3 Технология сбора тбо на местах их образования
- •5.1.4 Технология эвакуации тбо
- •5.1.5 Технология складирования тбо на полигонах
- •5.2 Технология рекультивации территорий закрытых полигонов
- •5.3 Термические методы переработки тбо
- •5.3.1 Классификация методов
- •5.3.2 Термические методы переработки тбо при температурах ниже температуры плавления шлака
- •5.3.2.1 Слоевое сжигание неподготовленных тбо в топках мусоросжигательных котлоагрегатов
- •5.3.2.2 Слоевое сжигание тбо в топке с наклонно переталкивающей решёткой
- •5.3.3 Сжигание в барабанных вращающихся печах
- •5.3.4 Сжигание в печах кипящего слоя
- •5.3.5 Сжигание-газификация в плотном слое кускового материала без его принудительных перемешивания и перемещения
- •5.3.6 Термические методы переработки тбо при температурах выше температуры плавления шлака
- •5.3.6.1 Сжигание в слое шлакового расплава
- •5.3.6.2 Сжигание с использованием электрошлакового расплава
- •5.3.6.3 Пиролиз тбо
- •5.4 Выработка и использование тепловой и других видов энергии на мусоросжигательных заводах
- •5.4.1 Основные предпосылки и факторы сравнения технологических схем утилизации мсз
- •5.4.2 Использование тепла мсз в системах теплоснабжения
- •5.4.2.1 Выбор варианта включения мсз в схему теплоснабжения
- •5.4.3 Использование тепла мсз для выработки электрической энергии
- •5.4.4 Использование тепла мсз для холодильных установок и систем кондиционирования воздуха
- •5.4.5 Использование тепла мсз для сушки осадков сточных вод
- •5.4.5.1 Испарительная сушка осв с использованием в качестве теплоносителя дымовых газов мсз
- •5.4.5.2 Испарительная установка сушки осв с использованием в качестве теплоносителя получаемого на мсз пара
- •5.5 Охрана окружающей среды при эксплуатации мсз
- •5.5.1 Очистка дымовых газов мсз
- •5.5.1.1 Характеристика дымовых газов мсз
- •5.5.1.2 Приемы очистки дымовых газов мсз
- •5.5.2 Утилизация золошлаковых отходов мсз
- •5.6 Аэробное компостирование тбо
- •5.7 Комплексная переработка тбо
- •II технология рекуперации промышленных отходов
- •1 Определения и классификация
- •2 Классификация твердых промышленных и бытовых отходов (тп и бо)
- •3 Технология переработки отходов. Содержащих или образующих органические вещества (диоксины и родственные им соединения)
- •3.1 Полиароматические углеводороды
- •3.2 ”Грязная дюжина”
- •3.3 Процессы, источники образования диоксинов, их токсичность
- •3.4 Полувыведение и полупревращение диоксинов
- •3.5 Показатели токсичности диоксинов
- •4 Технология переработки отходов. Содержащих или образующих неорганические вещества
- •4.1 Неорганические токсины
- •5 Переработка и утилизация отходов пластмасс
- •1 Предварительная очистка и сортировка 2 Измельчение 3 Отмывка и сепарация 4а Классификация по видам 4б Сушка
- •6 Использование при выпуске изделий 5 Конфекционирование и гранулирование
- •5.1 Сепарация пластмассовых отходов из бытового мусора
- •6 Переработка термопластичного вторичного сырья
- •6.1 Измельчение
- •6.2 Уплотнение
- •6.3 Агломерация
- •6.4 Промывка и сушка
- •6.5 Дегазация и фильтрование
- •6.6 Гомогенизация и пластикация
- •6.7 Технология подготовки и использования вторичного сырья из смесей термопластов с другими материалами
- •7 Переработка вторичного сырья эластомеров. Шины и рти
- •7.1 Использование целых шин
- •7.2 Сжигание шин с целью получения энергии
- •7.3 Пиролиз шин
- •7.4 Дробление (измельчение) изношенных шин
5.3.5 Сжигание-газификация в плотном слое кускового материала без его принудительных перемешивания и перемещения
Этот процесс
характеризуется высокой степенью
использования энергетического потенциала
сырья, подвергаемого термообработке.
Его осуществляют в реакторе (рисунок
42), представляющем собой вертикальную
шахтную печь, куда загружают отходы и
инертный материал – шамот, а снизу
подают газифицирующую паро-воздушную
смесь (t
= 60
80
°С). Шамот выполняет функцию теплоносителя
и создаёт оптимальные условия для
реакции газификации. Процесс проводят
при относительно малых линейных скоростях
потока и осуществляют в две стадии:
1) газификация отходов (максимальная температура в реакторе составляет 1200 °С – в зоне несколько ниже середины реактора);
2) сжигание полученного синтез-газа (это смесь водорода, оксида и диоксида углерода, азота и водяного пара, в которой присутствуют углеводороды и аэрозоли пиролизных смол). Процесс сжигания осуществляют в паровом котле при избытке вторичного воздуха.
Рисунок 42 - Реактор газификации в плотном слое кускового материала без принудительного перемешивания и перемещения отходов
5.3.6 Термические методы переработки тбо при температурах выше температуры плавления шлака
Основными недостатками традиционных методов термической переработки ТБО является большой объём отходящих газов и образование значительных количеств шлаков, которые отличаются повышенным содержанием тяжёлых металлов и по этой причине не находят применения, используясь, в основном, в качестве пересыпного материала на свалках. Для использования в строй-индустрии эти шлаки должны быть обезврежены плавлением в электропечах, печах с газовыми или мазутными горелками с последующим остекловыванием. В остеклованной форме токсичные вещества находятся в изолированном состоянии и не вымываются из шлака после его измельчения.
Для снижения количества отходящих газов с одновременным улучшением их состава и для сокращения затрат на дорогостоящую газоочистку работы ведут в двух направлениях:
1) с помощью сортировки сокращают массу ТБО, направляемых на термическую переработку, одновременно гомогенизируя отходы, повышая теплотворную способность и снижая содержание вредных и балластных компонентов;
2) направление основано на совершенствовании термического процесса путем замены части дутьевого воздуха на кислород.
Применение комбинированных термических процессов “пиролиз-газификация” c использованием в качестве газифицирующего агента кислорода приводит к оптимальной энергетической утилизации образующегося синтез-газа. Температура в процессе газификации повышается до 1400-2000 °С, что одновременно приводит к образованию расплава шлака.
Для получения шлаковых расплавов непосредственно в процессе термической переработки ТБО необходимо обеспечить температуру выше температуры плавления шлаков (около 1300 °С), что требует, как правило, либо использования кислорода, либо подвода дополнительной энергии. Замена части дутьевого воздуха на кислород одновременно обеспечивает снижение количества отходящих газов.
В настоящее время в мировой практике апробирован ряд методов высокотемпературной переработки ТБО:
1) комбинация процессов пиролиз-сжигание. Это совместное сжигание при 1300 °С образующихся пирогаза и твёрдого углеродистого пиролизного остатка, отсепарированного от минеральных компонентов;
2) комбинация процессов пиролиз-газификация-сжигание с использованием в качестве газифицирующего агента кислорода (температура процессов 1400-2000 °С);
3) металлургические процессы:
- процесс сжигания при температуре 1350-1400 °С в слое барботируемого шлакового расплава с использованием кислородного дутья (процесс Ванюкова, предложенный для переработки ТБО);
- термический процесс при температуре 1400-1500 °С с использованием электрошлакового расплава;
- доменный процесс при температуре 2000 °С;
4) плазменные технологии.