
- •I технология защиты биосферы
- •1 Источники, классификация и методы переработки твердых отходов
- •1.1 Источники и классификация твёрдых отходов
- •1.2 Механическая, механотермическая и термическая переработка твердых отходов (то)
- •2 Переработка отходов неорганических производств
- •2.1 Переработка отходов сернокислотного производства
- •2.2 Переработка отходов производства фосфорных удобрений
- •2.3 Переработка отходов производства калийных удобрений
- •2.4 Переработка отходов производства кальцинированной соды
- •2.5 Переработка отходов горнодобывающей промышленности
- •2.6 Переработка отходов углеобогащения
- •2.7 Переработка и использование сопутствующих пород
- •3 Отходы черной металлургии
- •3.1 Технологические процессы производства шлакового щебня
- •3.2 Шлаки цветной металлургии
- •4 Отходы тепловых электростанций
- •5 Технологии переработки твердых бытовых отходов
- •5.1 Технология сбора, удаления и складирования тбо
- •5.1.1 Масштабы образования и нормы накопления тбо
- •5.1.2 Состав и свойства тбо
- •5.1.3 Технология сбора тбо на местах их образования
- •5.1.4 Технология эвакуации тбо
- •5.1.5 Технология складирования тбо на полигонах
- •5.2 Технология рекультивации территорий закрытых полигонов
- •5.3 Термические методы переработки тбо
- •5.3.1 Классификация методов
- •5.3.2 Термические методы переработки тбо при температурах ниже температуры плавления шлака
- •5.3.2.1 Слоевое сжигание неподготовленных тбо в топках мусоросжигательных котлоагрегатов
- •5.3.2.2 Слоевое сжигание тбо в топке с наклонно переталкивающей решёткой
- •5.3.3 Сжигание в барабанных вращающихся печах
- •5.3.4 Сжигание в печах кипящего слоя
- •5.3.5 Сжигание-газификация в плотном слое кускового материала без его принудительных перемешивания и перемещения
- •5.3.6 Термические методы переработки тбо при температурах выше температуры плавления шлака
- •5.3.6.1 Сжигание в слое шлакового расплава
- •5.3.6.2 Сжигание с использованием электрошлакового расплава
- •5.3.6.3 Пиролиз тбо
- •5.4 Выработка и использование тепловой и других видов энергии на мусоросжигательных заводах
- •5.4.1 Основные предпосылки и факторы сравнения технологических схем утилизации мсз
- •5.4.2 Использование тепла мсз в системах теплоснабжения
- •5.4.2.1 Выбор варианта включения мсз в схему теплоснабжения
- •5.4.3 Использование тепла мсз для выработки электрической энергии
- •5.4.4 Использование тепла мсз для холодильных установок и систем кондиционирования воздуха
- •5.4.5 Использование тепла мсз для сушки осадков сточных вод
- •5.4.5.1 Испарительная сушка осв с использованием в качестве теплоносителя дымовых газов мсз
- •5.4.5.2 Испарительная установка сушки осв с использованием в качестве теплоносителя получаемого на мсз пара
- •5.5 Охрана окружающей среды при эксплуатации мсз
- •5.5.1 Очистка дымовых газов мсз
- •5.5.1.1 Характеристика дымовых газов мсз
- •5.5.1.2 Приемы очистки дымовых газов мсз
- •5.5.2 Утилизация золошлаковых отходов мсз
- •5.6 Аэробное компостирование тбо
- •5.7 Комплексная переработка тбо
- •II технология рекуперации промышленных отходов
- •1 Определения и классификация
- •2 Классификация твердых промышленных и бытовых отходов (тп и бо)
- •3 Технология переработки отходов. Содержащих или образующих органические вещества (диоксины и родственные им соединения)
- •3.1 Полиароматические углеводороды
- •3.2 ”Грязная дюжина”
- •3.3 Процессы, источники образования диоксинов, их токсичность
- •3.4 Полувыведение и полупревращение диоксинов
- •3.5 Показатели токсичности диоксинов
- •4 Технология переработки отходов. Содержащих или образующих неорганические вещества
- •4.1 Неорганические токсины
- •5 Переработка и утилизация отходов пластмасс
- •1 Предварительная очистка и сортировка 2 Измельчение 3 Отмывка и сепарация 4а Классификация по видам 4б Сушка
- •6 Использование при выпуске изделий 5 Конфекционирование и гранулирование
- •5.1 Сепарация пластмассовых отходов из бытового мусора
- •6 Переработка термопластичного вторичного сырья
- •6.1 Измельчение
- •6.2 Уплотнение
- •6.3 Агломерация
- •6.4 Промывка и сушка
- •6.5 Дегазация и фильтрование
- •6.6 Гомогенизация и пластикация
- •6.7 Технология подготовки и использования вторичного сырья из смесей термопластов с другими материалами
- •7 Переработка вторичного сырья эластомеров. Шины и рти
- •7.1 Использование целых шин
- •7.2 Сжигание шин с целью получения энергии
- •7.3 Пиролиз шин
- •7.4 Дробление (измельчение) изношенных шин
3.1 Технологические процессы производства шлакового щебня
На рисунке 30 приведена схема производства фракционированного щебня из находящихся в отвалах не менее 1,5-2-х лет мартеновских шлаков.
Скреперной лебедкой 1 отвальный шлак подается на колосниковую решетку 2, где отделяются крупные куски шлака или куски металла. Подрешетный продукт толкателем 3 подается на ленточный транспортер 5, откуда поступает на грохот 6. Надрешетный продукт с грохота подается в щековую дробилку 7, после чего измельченный шлак поступает в конусную дробилку 9 и на следующий грохот 10, с которого надрешетный продукт отводится в виде товарной фракции 10-40 мм. В процессе переработки из шлака с помощью электромагнитных сепараторов 4 и 8 отделяются металлические включения. Подрешетный продукт грохотов отводится в виде фракции 0-10 мм.
1 – скреперная лебедка; 2 – колосниковая решетка; 3 - толкатель; 4, 8 - магнитный сепаратор; 5 – ленточный транспортер; 6 - грохот; 7 - щековая дробилка; 9 – конусная дробилка; 10 - грохот
Рисунок 30 – Схема производства фракционированного щебня из отвальных мартеновских шлаков
3.2 Шлаки цветной металлургии
По химическому составу они могут быть условно объединены в три группы. В первую группу входят шлаки никелевых заводов и часть шлаков медных заводов, отличающихся малым содержанием цветных металлов и железа. Извлечение ценных компонентов из таких шлаков экономически нецелесообразно, поэтому наиболее приемлемым путем их использования является переработка в строительные материалы и изделия. Вторую группу составляют медные шлаки, отличающиеся значительным содержанием железа, малым содержанием меди и присутствием до 5 % цинка и свинца. Такие шлаки целесообразно перерабатывать лишь при комплексном извлечении из них цинка, свинца и железа с одновременной утилизацией силикатной части. Третья группа объединяет оловянные и свинцовые шлаки, а также некоторые медные шлаки, отличающиеся значительным содержанием цинка, свинца и олова, что делает экономически целесообразным их извлечение из шлаков даже без комплексной переработки последних.
Технология переработки шлаков цветной металлургии выбирается в зависимости от их состава и физико-химических свойств (вязкость, плавкость, фазовый состав, структура, энтальпия, электропроводность и др.).
В промышленности для переработки шлаков с целью извлечения ценных компонентов используются способы фъюмингования, вельцевания и электротермической обработки.
Фъюмингование. Через слой расплавленного шлака, находящегося в шахтной печи, продувают под давлением воздух с угольной пылью. При этом воздух подают в количествах, недостаточных для полного сжигания угля, что приводит к образованию оксида углерода, восстанавливающего содержащиеся в шлаке оксиды металлов. Образующиеся пары металлов окисляются над расплавом воздухом до оксидов, уносимых газовым потоком из печи и отделяемых затем в пылеуловителях. Процесс фъюмингования широко используется для переработки цинксодержащих свинцовых шлаков.
Работа шлаковозгоночной фъюминг-печи является периодической. Заливка жидкого шлака продолжается обычно 10-15 мин, затем в течение 1,5-2 часов производится подача в печь воздушной пылеугольной смеси. В расплав можно вводить добавки твердых шлаков. По окончании продувки в течение примерно 10 минут производится выпуск шлака из печи, после чего шлак гранулируют непосредственно или после отстаивания с целью выделения бедной фракции при наличии в шлаке меди и серебра. Шахтные фьюминг-печи позволяют перерабатывать 250-700 т шлаков в сутки.
Вельцевание. Переработка шлаков вельцеванием проводится в горизонтальных наклонных трубчатых вращающихся печах в присутствии восстановителя при температурах 1100-1200 °С. В таких условиях при непрерывном перемешивании реакционной массы протекают реакции восстановления цинка, свинца и редких элементов до металлов. Возогнанные пары металлов окисляются над шихтой до оксидов, уносимых из печи и улавливаемых в системах очистки газов. При вельцевании используют частицы с размером 3-5 мм и кокс (50-55 % от массы шихты) с размером зёрен 15 мм. Шихту непрерывно загружают в печь, через которую она проходит в течение 2-3 часов. При недостатке тепла в разгрузочном конце печи устанавливают газовую (мазутную) горелку. В этом случае к технологическим газам добавляют топочные.
Присутствующий в шихте сульфид свинца сплавляется с сульфидами других металлов и образует штейн, стекающий к разгрузочному концу печи. Содержащиеся в шихте благородные металлы и медь в условиях процесса вельцевания не возгоняются и практически нацело остаются в твёрдом остатке вельцевания - клинкере, который при значительном содержании этих металлов затем перерабатывают с целью их извлечения. Степень извлечения свинца и цинка в возгоны при вельцевании составляет ≥ 90%.
Электротермическая переработка. При электротермической переработке можно обрабатывать как жидкие (в отличие от вельцевания), так и твёрдые (в отличие от фъюмингования) шлаки. При переработке отвальных шлаков плавку ведут в руднотермических печах. Электроды печи погружаются в шлак, служащий телом сопротивления. Электротермическая переработка шлаков представляет восстановительный процесс взаимодействия расплава с находящимся на его поверхности коксом. В результате протекания при 1250-1500 °С окислительно-восстановительных процессов происходит восстановление цинка, возогнанные пары которого направляются в конденсатор, где цинк превращается в жидкий металл, подвергаемый ликвации. Его рафинируют или отливают в чушки для отправки потребителям. Несконденсированный в металл цинк улавливается в виде пыли в пылеуловителях.
После возгонки цинка шлак сливают из печи и передают в отвал или на извлечение железа с одновременным использованием его силикатной части. Отделяемый штейн с достаточной концентрацией меди передаётся в медеплавильное производство, а свинец, отделяемый от цинка при ликвидации, вместе с черновым металлом, образующимся в электропечи, отправляется на рафинирование.
Перечисленные шлаковозгонные процессы не обеспечивают полного извлечения всех ценных компонентов перерабатываемых шлаков. Фъюмингование и вельцевание позволяют извлекать цинк и свинец, однако не обеспечивают необходимого их удаления, а также извлечения меди, благородных металлов и железа. Поэтому прошедшие переработку шлаки не являются отвальными.
Помимо перечисленных способов переработки шлаков цветной металлургии разработаны:
1. карбидотермический (осуществляемый в электропечах с использованием в качестве флюса известняка и коксика);
2. цементационный, основанный на восстановлении оксидов металлов из шлаковых расплавов высокоактивным углеродом, растворённым в специально добавляемом науглероженном чугуне, а также образующимся при разложении мета-стабильной фазы цементита Fe3C жидкого чугуна под слоем шлака);
3. газоэлектротермический способ обработки шлакового расплава в электропечи природным газом;
4. флотация, применяемая для медленно охлаждённых шлаков после их тонкого измельчения;
5. магнитная сепарация, используемая для клинкера процесса вельцевания, и др.
Эти способы обеспечивают получение отвальных шлаков с возможностью использования их силикатной части в качестве сырья для производства шлаковых плит и фасонных изделий (для полов и футеровки), минеральной ваты, металлошлаковых труб, шлакоситаллов, заполнителей бетонов и других строительных материалов. Технология соответствующих производств на основе шлаков цветной металлургии аналогична таковой, используемой при переработке шлаков чёрной металлургии. Некоторые шлаки цветной металлургии непосредственно могут перерабатываться в щебень, песок и другие строительные материалы, а в гранулированном виде - использоваться в цементном производстве.
Шлаки чёрной металлургии тоже перерабатываются. Полученный обогащением бедных руд магнетитовый концентрат (> 70 % Fe) в виде порошка смешивается с бентонитом и известняком, выполняющим в процессе роль флюса, и передаётся в окомкователь для получения железнорудных окатышей (Ø ≈ 10мм). Окатыши затем упрочняются обжигом, и оксиды железа восстанавливаются природным газом, конверсированным отходящими из шахтной печи газами. При температурах 1000-1100 °С идёт образование губчатого железа (95 % Fe, 1 % C); окатыши охлаждают и передают в дуговые электропечи на плавку. Шламы процессов газоочистки направляют в отстойники для пульпы, используемой в качестве сырья для получения окатышей.