Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Konspekt_tem_dlya_samostiynogo_opratsyuvannya.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.08 Mб
Скачать

Самостійна робота №5 Магнітні підсилювачі

Робота магнітних підсилювачів заснована на використанні властивостей феромагнітних матеріалів. Нагадаємо ці властивості, відомі з курсу фізики. Якщо по обмотці, розташованій на осерді з феромагнітного матеріалу, протікає електричний струм, то в осерді виникає магнітне поле. Це магнітне поле в осерді характеризується напруженістю Н і магнітною індукцією В. Напруженість магнітного поля Н створюється струмом, що проходить по обмотці, та вимірюється в амперах на метр (А/м). Магнітна індукція В збільшується при зростанні напруженості Н і вимірюється в теслах (Тл). Крива, яка характеризує залежність магнітної індукції В від напруженості магнітного поля Н, називається кривою намагнічування феромагнітного матеріалу (рис. 2.1.1).

Починаючи з деякого значення напруженості магнітного поля, подальше її збільшення практично не призводить до зміни магнітної індукції. В цьому випадку визначають, що магнітний матеріал досяг стану насичення. Максимальна індукція в осерді називається індукцією насичення ВS; напруженість поля при цьому дорівнює НS.

Якщо далі зменшувати напруженість поля, то зміна магнітної індукції відбувається за новою кривою (крива 2). Індукція при цьому зменшується повільніше, ніж вона зростала при збільшенні Н від 0 до НS (крива 1). При зменшенні напруженості магнітного поля до нуля (тобто за відсутності струму в обмотці) індукція в осерді зберігає значення Вr , яке називається залишковою індукцією. При збільшенні напруженості магнітного поля в зворотному напрямку (тобто при зміні напрямку струму в обмотці) індукція зменшується до нуля при напруженості – НС, яка носить назву коерцитивної сили. Далі при значенні напруженості – Hs осердя знову насичується, індукція в ньому буде дорівнювати -Bs. Тепер при зміні напруженості від -Hs до +Hs зміна індукції відбувається за кривою 3. Таким чином, зміна індукції в залежності від напруженості поля відбувається за графіком, який має вигляд петлі, що називається петлею гістерезису. Як бачимо, залежність В(Н) має явно виражений нелінійний характер.

В залежності від ширини петлі гістерезису розрізняють магнітно-м’які та магнітно-тверді матеріали. Матеріали з широкою петлею гістерезису називаються магнітно-твердими, зазвичай, вони використовуються для постійних магнітів. Матеріали з вузькою петлею гістерезису називаються магнітно-м’якими і вони використовуються для осердь магнітних підсилювачів та інших електромагнітних приладів: реле, трансформаторів, електричних машин. Для пояснення принципу дії магнітного підсилювача можна знехтувати петлею гістерезису і вважати, що зміна магнітної індукції в залежності від напруженості відбувається по середній (основній) кривій намагнічування.

Самостійна робота №6 Магнітні трансформатори

Трансформа́тор — пристрій, що використовується для зміни напруги й сили змінного струму.

Трансформатори широко застовуються в лініях електропередач, в розподільних та побутових пристроях. Передача електроенергії відбувається з меншими втратами при високій напрузі й малій силі струму. Тому зазвичай лінії електропередач високовольтні. Водночас побутові й промислові машини вимагають високої сили струму й малої напруги, тому перед споживанням електроенергія перетворюється в низьковольтну.

Трансформатори характеризуються дуже високим коефіцієнтом корисної дії.

Вперше трансформатори, як такі були продемонстровані в 1882 році, хоча ще в 1876 році Яблочков використовував аналогічний пристрій для створених ним освітлювальних пристроїв — «свічок Яблочкова».

Будова й принцип дії

Позначення трансформатора у схемі

Трансформатор складається з обмоток на спільному осерді. Одна з обомоток під'єднана до джерела змінного струму. Ця обмотка називається первинною. Інша обмотка, вторинна, служить джерелом струму для навантаження. Створений струмом у первинній обмотці змінний магнітний потік викликає появу е.р.с. у вторинній обмотці, оскільки обидві обмотки мають спільне осердя. Співвідношення е.р.с. у вторинній обмотці й напруги на первинній залежить від кількості витків у обох обмотках.

Втрати енергії

У реальних трансформаторах енергія не передається від первинного кола до вторинного без втрат. Існує низка фізичних причин, що їх зумовлюють.

Однією з причин втрат є активний опір обмоток. При протіканні струму через трансформатор, він нагрівається і віддає тепло оточенню. При високій частоті опір збільшується завдяки скін-ефекту та ефекту близкості, які зменшують площу перерізу провідника, через який протікає струм.

Ще одна причина втрат - перемагнічування осердя завдяки гістерезису. Ці втрати для конкретної речовини осердя пропорційні частоті й залежать від пікового потоку магнітного поля через осердя.

Інше причина втрат - струми Фуко. Змінне магнітне поле в осерді породжує змінне вихрове електричне поле, яке викликає додаткові вихрові струми, що теж призводять до нагрівання. Для зменшення струмів Фуко осердя виготовляють із тонких пластинок, оскільки втрати, пов'язані зі струмами Фуко, обернено квадратично залежать від товщини матеріалу.

Частина енергії втрачається на механічні коливання. Феромагнітний матеріал осердя розширюється і стискаєть у змінному магнітному полі завдяки явищу магнітострикції. Цим пояснюється гудіння трансформатора, що супроводжує його роботу. Додатково, первинна й вторинна обмотка притягаються й відштовхуються у змінному магнітному полі, змушуючи також коливатися і корпус трансформатора.

Магнітний потік, що виходить за межі осердя, сам по собі не призводить до втрати енергії, але він може призводити до появи вихрових струмів Фуко в металевих деталях корпусу й кріплення, що теж зумовлює невеликі втрати енергії.

Загалом, великі трансформатори мають високий коефіцієнт корисної дії, до 98 %. Трансформатори з надпровідних матеріалів можуть збільшити цей коефіцієнт до 99,85 %[.

Втрати у трансформаторах залежать від навантаження. Втрати без навантаження зумовлені в основному опором обмоток, тоді як причиною втрат при повному навантаженні зазвичай є гістерезис та вихрові струми. Втрати при відсутності навантаження можуть бути значними, тому навіть, якщо до вторинної обмотки нічого не підключено, трансформатори повинні задовільняти умовам економної роботи. Конструювання трансформаторів із малими втратами вимагає великого осердя, високоякісної електричної сталі, товстіших провідників, що збільшує початкові затрати, але окупається при експуатації.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]