
- •Самостійна робота 1
- •Самостійна робота 2
- •Самостійна робота 3
- •Самостійна робота 4
- •Самостійна робота 5
- •Домішкова провідність напівпровідників
- •Самостійна робота 6
- •1. Класифікація провідникових матеріалів (пм)
- •Самостійна робота 7
- •Самостійна робота 8
- •Самостійна робота 9
- •Електричні напівпровідникові переходи.
- •Електронно-дірковий перехід.
- •2. Утворення електронно-діркового переходу
- •Самостійна робота 10
- •Самостійна робота 11
- •Електронний - дірковий перехід без зовнішньої дії
- •Самостійна робота 12
- •Самостійна робота 13
- •Поняття інформаційної технології
- •Самостійна робота 14
- •Термокомпресорне зварювання
- •Самостійна робота 15
- •Самостійна робота 16
- •Самостійна робота 17
- •Самостійна робота 18
- •1.1 Підкладки інтегральних схем
- •1.2 Елементи іс
- •Самостійна робота 19
- •Самостійна робота 20
- •Самостійна робота 21
- •Самостійна робота 22
- •Статичні вольтамперні характеристики біполярного транзистора.
- •Самостійна робота 23
- •Самостійна робота 24
- •Самостійна робота 25
- •Параметры
- •Самостійна робота 26 Напівпровідникові діоди
- •Самостійна робота 27 Види генераторів
- •Самостійні 2частина
- •Самостійна робота №1 Сиcтема числення
- •Самостійна робота №2,3 Закони булевої алгебри
- •Самостійна робота №4 Феромагнітні матеріали
- •Самостійна робота №5 Магнітні підсилювачі
- •Самостійна робота №6 Магнітні трансформатори
- •Самостоятельная робота №7 Послідовні логічні схеми
- •Самостійна робота №8 Дешифратори й індикатори
- •Самостійна робота №9 Системи керування імпульсних перетворювачів
- •Самостиійна робота №10 Поверхневі явища напівпровідника Дослідження схем за допомогою пакету Micro-Cap поверхневі явища в напівпровідниках
- •Дослідження схем за допомогою пакету Micro-Cap
- •Самостійна робота №11 Запам'ятовувальні пристрої
- •Самостійна робота № 12 Пристрої збереження та передачі
- •Самостійна робота №13 Архітектура пеом. Принцип мікропроцесорного керування
- •Самостійна робота №14 Мультивібратори
- •Самостійна робота № 15
- •Самостійна робота № 16
- •Самостійна робота № 17
- •Програма на мові Ассемблера
- •Самостійна робота № 18
- •Самостійна робота № 19
- •Самостійна робота № 20
- •Самостійна робота № 21
- •Самостійна робота № 22
- •Структурна схема кр580вт57 Самостійна робота № 23
- •Самостійна робота № 24
- •Самостійна робота № 25 Мікропроцесор к1810вм86
- •Програмно-доступні регістри мікропроцесора Самостійна робота № 26 Організаційна робота мікропроцесора к1810вм86
- •Самостійна робота № 27 Функціонування цп
- •Самостійна робота № 30 Архітектура Мікроконтролера pic
- •Управління переривання в мікроконтроллерах pic
Самостійна робота 17
Частотні явища "р-п" переходу напівпровідника
Температурні і частотні властивості р-п переходу
Властивості р-п переходу істотно залежать від температури навколишнього середовища. При підвищенні температури зростає генерація пар носіїв заряду - електронів і дірок, тобто збільшується концентрація неосновних носіїв і власна провідність напівпровідника. Це наочно показують вольтамперні характеристики германієвого р-п переходу, зняті при різній температурі (мал. 3.9). Як видно з малюнка, при підвищенні температури прямий і зворотний струми ростуть, а р-п перехід втрачає своя основна властивість - односторонню провідність.
Залежність від температури зворотної гілки вольтамперної характеристики визначається температурними змінами струму насичення. Цей струм пропорційний рівноважній концентрації неосновних носіїв заряду, яка із збільшенням температури зростає по експоненціальному закону.
Для
германієвих і кремнієвих р-п переходів
зворотний струм зростає приблизно в
2-2,5 разу при підвищенні температури на
кожні 10 °С.
Мал. 3.9. Вплив температури на вольтамперну характеристику р-п переходу
Прямий струм р-п переходу при нагріві зростає не так сильно, як зворотний струм. Це пояснюється тим, що прямий струм виникає в основному за рахунок домішкової провідності. Але концентрація домішок від температури практично не залежить. Температурна залежність прямої гілки вольтамперної характеристики визначається змінами струму і показника експоненти.
Для германієвих приладів верхня температурна межа 70...90°С. У кремнієвих приладів унаслідок більшої енергії, необхідної для відриву валентного електрона від ядра атома, ця межа вища: 120... 150°С.
Властивості р-п переходу залежать також від частоти прикладеної напруги. Це пояснюється наявністю власної ємності між шарами напівпровідника з різними типами провідності.
При зворотній напрузі, прикладеній до р-п переходу, носії зарядів обох знаків знаходяться по обидві сторони переходу, а в області самого переходу їх дуже мало. Таким чином, в режимі зворотної напруги р-пперехід є ємність, величина якої пропорційна площі р-п переходу, концентрації носіїв заряду і діелектричної проникності матеріалу напівпровідника. Цю ємність називають бар'єрною. При малій зворотній напрузі, прикладеній до р-п переходу, носії зарядів протилежних знаків знаходяться на невеликій відстані один від одного. При цьому власна ємність р-п переходу велика. При збільшенні зворотної напруги електрони все далі відходять від дірок по обидві сторони від р-п переходу і ємність р-п переходу зменшується. Отже, р-п перехід можна використовувати як ємність, керовану величиною зворотної напруги.
При прямій напрузі р-п перехід, окрім бар'єрної ємності, володіє так званою дифузійною ємністю. Ця ємність обумовлена накопиченням рухомих носіїв заряду. При прямій напрузі в результаті інжекції основні носії заряду у великій кількості дифундують через знижений потенційний бар'єр і, не встигнувши рекомбінувати, накопичуються в n- і р-областях. Кожному значенню прямої напруги відповідає певна величина заряду накопиченого в області р-п переходу.
Мал. 3.10. Еквівалентна схема p-n переходу
Дифузійна ємність не робить істотного впливу на роботу р-п переходу, оскільки вона завжди зашунтована малим прямим опором переходу. Найбільше практичне значення має бар'єрна ємність. У зв'язку з цим еквівалентна схема р-п переходу (схема заміщення) для змінного струму має вигляд, показаний на мал. 3.10. При зворотній напрузі дифузійна ємність відсутня і має дуже велику величину. При роботі на високих частотах опір ємності зменшується, і зворотний струм може пройти через цю ємність, не дивлячись на велику величину опору. Це порушує нормальну роботу приладу, оскільки р-п перехід втрачає властивість односторонньої провідності. Тому для роботи на високих частотах використовуються в основному точкові напівпровідникові прилади, у яких площа р-п переходу незначна і власна ємність мала.
В даний час є напівпровідникові прилади, що успішно працюють в дуже широкому діапазоні частот - до сотень мегагерц і вище.